

### Authors

Na Pi Parra and Shane E. Tichy Agilent Technologies, Inc. Santa Clara, CA USA

Jon A. Gangoiti, Ilya Gertsman, and Bruce A. Barshop Biochemical Genetics Laboratory University of California San Diego La Jolla, CA USA Quantitation of Cystine and Identification of Related Metabolites in White Blood Cells Using a High Resolution Accurate Mass LC/MS Approach

## **Application Note**

## Abstract

High resolution accurate mass (HRAM) LC/MS approach was demonstrated for quantitation and profiling of small molecule metabolites in complex biological samples. Excellent assay performance was achieved in the quantitation of cystine in white blood cells (WBCs) using the ultra-high resolving power and mass accuracy of an Agilent 6530 Accurate-Mass Q-TOF LC/MS System. Further, related metabolites were successfully identified and quantitatively profiled. The HRAM LC/MS data acquired in this study can be retrospectively analyzed to search for more metabolites and biomarkers without sample re-injection.



### Introduction

Cystine levels in WBCs are commonly measured by multiple reaction monitoring (MRM) using triple quadrupole mass spectrometry.<sup>1</sup> Recently, Q-TOF HRAM mass spectrometry has become a promising approach in clinical research analysis in that it allows rapid method development and provides full scan accurate mass data for further metabolite and biomarker identification.<sup>2-5</sup>

In this application note, an HRAM method with great selectivity and mass accuracy is presented for quantitation of cystine in WBCs using an Agilent 6530 Accurate-Mass Q-TOF LC/MS System connected to an Agilent 1290 Infinity LC System. The quantitation performance of the Q-TOF HRAM method was evaluated and compared to that of a previously validated MRM method. Excellent sensitivity, linearity, dynamic range, precision, accuracy, and reproducibility were demonstrated in the HRAM method, which is comparable to that of the MRM method. Both methods were used to measure the WBC cystine concentrations for 23 previously analyzed samples (10 controls and 13 cystinotic unknowns) and consistent quantitation results were observed. Cystine quantitation and 44 related metabolites (Table 1) were simultaneously investigated based on the accurate mass information.

A targeted workflow is described for clinical metabolite identification and profiling using Agilent MassHunter Qualitative Analysis and Personal Compound Database and Library (PCDL) software tools. Table 1. Cystine, d4-cystine, and 44 related metabolites in WBCs.

| Compound                          | Formula                                                                         |
|-----------------------------------|---------------------------------------------------------------------------------|
| I - Cystine                       | CoHeoNoOeSo                                                                     |
| d4-Cystine                        | C.H.D.N.O.S.                                                                    |
| Cysteamine                        | C <sub>2</sub> H <sub>7</sub> NS                                                |
| heta-Alanine                      | C <sub>o</sub> H <sub>2</sub> NO <sub>2</sub>                                   |
| Serine                            | <u> </u>                                                                        |
| Hypotaurine                       | C <sub>2</sub> H <sub>7</sub> NO <sub>2</sub> S                                 |
| Cysteine                          | C <sub>2</sub> H <sub>7</sub> NO <sub>2</sub> S                                 |
| Taurine                           | <u>C<sub>2</sub>H<sub>7</sub>NO<sub>2</sub>S</u>                                |
| 5-Oxoproline                      | C <sub>5</sub> H <sub>7</sub> NO <sub>3</sub>                                   |
| Homocysteine                      | C <sub>4</sub> H <sub>9</sub> NO <sub>2</sub> S                                 |
| L-Lysine                          | $C_6H_{14}N_2O_2$                                                               |
| 0-Acetylserine                    | $C_5H_9NO_4$                                                                    |
| Pantoic acid                      | $C_6H_{12}O_4$                                                                  |
| Methionine                        | $C_5H_{11}NO_2S$                                                                |
| Cystamine                         | $C_4H_{12}N_2S_2$                                                               |
| Thiocystine                       | C <sub>3</sub> H <sub>7</sub> NO <sub>2</sub> S <sub>2</sub>                    |
| Carnitine                         | C <sub>7</sub> H <sub>16</sub> NO <sub>3</sub>                                  |
| N-Acetylcysteine                  | C <sub>5</sub> H <sub>9</sub> NO <sub>3</sub> S                                 |
| Cysteic acid                      | C <sub>3</sub> H <sub>7</sub> NO <sub>5</sub> S                                 |
| Cysteinylglycine                  | C <sub>5</sub> H <sub>10</sub> N <sub>2</sub> O <sub>3</sub> S                  |
| Cysteine-cysteamine               | $C_5H_{12}N_2O_2S_2$                                                            |
| S-Sulfocysteine                   | C <sub>3</sub> H <sub>7</sub> NO <sub>5</sub> S <sub>2</sub>                    |
| Acetylcarnitine                   | C <sub>9</sub> H <sub>17</sub> NO <sub>4</sub>                                  |
| Pantothenol                       | C <sub>9</sub> H <sub>19</sub> NO <sub>4</sub>                                  |
| Homocysteine-cysteamine           | $C_{6}H_{14}N_{2}O_{2}S_{2}$                                                    |
| Pantothenate                      | C <sub>9</sub> H <sub>17</sub> NO <sub>5</sub>                                  |
| Cystathionine                     | C <sub>7</sub> H <sub>14</sub> N <sub>2</sub> O <sub>4</sub> S                  |
| g-glutamylcysteine                | C <sub>8</sub> H <sub>14</sub> N <sub>2</sub> O <sub>5</sub> S                  |
| Cysteine-homocysteine             | C <sub>7</sub> H <sub>14</sub> N <sub>2</sub> O <sub>4</sub> S <sub>2</sub>     |
| N(epsilon)-g-glutamyllysine       | C <sub>11</sub> H <sub>21</sub> N <sub>3</sub> O <sub>5</sub>                   |
| Pantetheine                       | C <sub>11</sub> H <sub>22</sub> N <sub>2</sub> O <sub>4</sub> S                 |
| Glutathione (reduced)             | C <sub>10</sub> H <sub>17</sub> N <sub>3</sub> O <sub>6</sub> S                 |
| N-[(R)-pantothenoyl]-L-cysteine   | C <sub>12</sub> H <sub>22</sub> N <sub>2</sub> O <sub>6</sub> S                 |
| 4'-Phosphopantetheine             | C <sub>11</sub> H <sub>23</sub> N <sub>2</sub> O <sub>7</sub> PS                |
| Glutathione-cysteamine            | C <sub>12</sub> H <sub>22</sub> N <sub>4</sub> O <sub>6</sub> S <sub>2</sub>    |
| S-Adenosylhomocysteine            | C <sub>14</sub> H <sub>2</sub> 0N <sub>6</sub> O <sub>5</sub> S                 |
| 4'-Phosphopantothenoyl-L-cysteine | C <sub>12</sub> H <sub>2</sub> 0N <sub>2</sub> O <sub>9</sub> PS                |
| S-Adenoylmethionine               | C <sub>15</sub> H <sub>23</sub> N <sub>6</sub> O <sub>5</sub> S                 |
| Glutathione-cysteine              | C <sub>13</sub> H <sub>22</sub> N <sub>4</sub> O <sub>8</sub> S <sub>2</sub>    |
| Adenosine-3',5'-bisphosphate      | C <sub>10</sub> H <sub>15</sub> N <sub>5</sub> O <sub>10</sub> P <sub>2</sub>   |
| Glutathione (oxidized)            | C <sub>20</sub> H <sub>32</sub> N <sub>6</sub> O <sub>12</sub> S <sub>2</sub>   |
| Dephospho-CoA                     | C <sub>21</sub> H <sub>35</sub> N <sub>7</sub> O <sub>13</sub> P <sub>2</sub> S |
| Coenzyme A                        | C <sub>21</sub> H <sub>36</sub> N <sub>7</sub> O <sub>16</sub> P <sub>3</sub> S |
| Acetyl-coenzyme A                 | C <sub>23</sub> H <sub>38</sub> N <sub>7</sub> O <sub>17</sub> P <sub>3</sub> S |
| Ubiquinone-10                     | C <sub>59</sub> H <sub>90</sub> O <sub>4</sub>                                  |
| Ubiquinol-10                      | C <sub>59</sub> H <sub>92</sub> O <sub>4</sub>                                  |

## **Experimental**

### Sample preparation

Calibration standards (0.02–4.0  $\mu$ M) and low, medium, and high level quality control (QC) solutions were prepared by spiking cystine at varied concentrations in WBC lysates (Table 2). WBC lysate samples from 23 previously analyzed samples, calibration standards, and QC solutions were spiked with d4-cystine as internal standard at 2  $\mu$ M and extracted with ice-cold acetonitrile before LC/MS analysis. WBC lysate was used as double blank and WBC lysate with 2  $\mu$ M d4-cystine was used as blank.

#### Table 2. Calibration standard and QC solutions of cystine in WBCs.

| Туре         | Level | Injection vol.<br>(µL) | Concentration<br>(µM) | fmol<br>on-column | d4-cystine<br>concentration (µM) |
|--------------|-------|------------------------|-----------------------|-------------------|----------------------------------|
| Calibration  | 1     | 2                      | 0.02                  | 40                | 2                                |
| Calibration  | 2     | 2                      | 0.04                  | 80                | 2                                |
| Calibration  | 3     | 2                      | 0.1                   | 200               | 2                                |
| Calibration  | 4     | 2                      | 0.2                   | 400               | 2                                |
| Calibration  | 5     | 2                      | 0.4                   | 800               | 2                                |
| Calibration  | 6     | 2                      | 1                     | 2,000             | 2                                |
| Calibration  | 7     | 2                      | 2                     | 4,000             | 2                                |
| Calibration  | 8     | 2                      | 4                     | 8,000             | 2                                |
| QC           | Low   | 2                      | 0.015                 | 30                | 2                                |
| QC           | High  | 2                      | 0.9                   | 1,800             | 2                                |
| Blank        |       | 2                      | 0                     | 0                 | 2                                |
| Double blank |       | 2                      | 0                     | 0                 | 2                                |

#### Instrumentation

Liquid chromatography was performed using an Agilent 1290 Infinity LC System consisting of a binary pump, vacuum degasser, high performance thermostatted autosampler, and a thermostatted column compartment. Full acquisition MS was performed on an Agilent 6530 Q-TOF mass spectrometer equipped with Agilent Jet Stream source in positive ionization mode using a mass resolving power of 10K. Liquid chromatography, ion source conditions and MS acquisition method parameters were optimized for cystine in WBC lysate, as listed in Table 3.

#### Data acquisition and analysis

MassHunter Workstation Software (B.03.01) was used for data acquisition. MassHunter Quantitative (Quan) Analysis Software (version B.04.00) was used for generation of calibration curves and quantitation of cystine in WBCs. Extracted ion chromatograms (EICs) of m/z 241.0311 for cystine and m/z 245.0562 for d4-cystine were employed for quantitation. The mass extraction window was 10 ppm. The quantitative capability of this HRAM method was evaluated by comparing results to that of an MRM method. Additionally, MassHunter Qualitative (Qual) Analysis Software (version B.03.01) was used for profiling and identification of cystine and the other 44 related metabolites (Table 1) from WBCs. In MassHunter Qual, the data files were processed by targeted data mining and compound identification approaches, Find by Formula (FbF) with Molecular Formula Generation (MFG) scores, and database search.

Table 3. Liquid chromatography and Q-TOF MS conditions.

| LC conditions                    |                                                                    |
|----------------------------------|--------------------------------------------------------------------|
| Column                           | Teicoplanin chiral column (2.1 × 250 mm, 5 µm)                     |
| Column temperature               | 40 °C                                                              |
| Injection volume                 | 2 µL                                                               |
| Autosampler temperature          | 6 °C                                                               |
| Needle wash                      | 10 seconds in wash port                                            |
| Mobile phase                     | A = 0.025 % formic acid in water                                   |
|                                  | B = 0.025 % formic acid in acetonitrile                            |
| Flow rate                        | 0.5 mL/min                                                         |
| Gradient                         | Isocratic 50:50 A:B                                                |
| Stop time                        | 4.5 min                                                            |
| Q-TOF MS source conditions       |                                                                    |
| lon mode                         | Positive                                                           |
| Drying gas temperature           | 300 °C                                                             |
| Drying gas flow                  | 7 L/min                                                            |
| Sheath gas temperature           | 400 °C                                                             |
| Sheath gas flow                  | 11 L/min                                                           |
| Nebulizer pressure               | 35 psi                                                             |
| Capillary voltage                | 3,750 V                                                            |
| Nozzle voltage                   | 0 V                                                                |
| Fragmentor voltage               | 200 V                                                              |
| Reference delivery               | Agilent 1200 Isocratic pump with 100:1 splitter (p/n: G1607-60000) |
| Reference pump flow              | 0.5 mL/min for 5 $\mu L/min$ to nebulizer                          |
| Reference ions                   | 121.050873 and 922.009798                                          |
| Instrument mass range            | 1.700 Da                                                           |
| Instrument mode                  | Extended dynamic range                                             |
| Data storage                     | Centroid and profile                                               |
| Q-TOF MS acquisition method para | imeters                                                            |
| Mass range                       | 100–1,000 <i>m/z</i>                                               |
| Acquisition rate                 | 2 Hz, 500 ms/scan                                                  |

#### **Results and Discussion**

Cystine quantitation

Cystine and d4-cystine were eluted at retention time (RT) of 2.65 minutes and their EICs of [M+H]<sup>+</sup> were employed for quantitation (Figure 1). The high mass resolving power and narrow mass extraction window employed in the HRAM LC/MS method greatly decreased the endogenous interference from WBC lysate, thus significantly improved the selectivity, sensitivity, and other assay performance parameters (for example, linearity, range, precision, and accuracy) of the quantitative detection.

#### Sensitivity

In this application note, limit of quantitation (LOQ) is defined as the lowest concentration or amount of the analyte on-column that generates a signal significantly different from the blank, has a signal to noise (S/N) ratio > 5:1, and gives an acceptable accuracy (80-120 %), retention time reproducibility (% RSD < 20) and quantitative precision (% RSD < 20). The LOQ of cystine in WBCs is 0.02  $\mu$ M, or 40 fmol on-column, with an S/N ratio > 5:1 (Figure 2).



Figure 1. EICs of cystine and d4-cystine internal standard.



Figure 2. EICs of cystine *m/z* 241.0311 at LOQ level, 0.02 µM (40 fmol on-column).

As illustrated by Figure 2 and Table 4, excellent accuracy (105.3 %) and reproducibility of retention time and peak area response (% RSD = 4.5 from triplicate analysis) were obtained at the LOQ level.

# Calibration curve linearity and range

Cystine calibration standard solutions were analyzed in triplicate over a threeday time period and the average calibration curve (n = 3) is demonstrated in Figure 3. The cystine calibration curve in WBCs shows excellent linearity with an average  $R^2 > 1$ 0.9999 (Day 1 = 0.99976, Day 2 = 0.99997, and Day 3 = 0.99996) in the dynamic range of  $0.02 - 4 \mu M$ . As summarized in Table 4, great detection accuracy (95.2-105.3 %) and precision (% RSD = 2.0-6.2) were observed at all calibration levels. In addition, consistent detection response factors (RF) were obtained over the calibration range, with a % RSD (n = 8) of 3.4 from the eight calibration levels.

#### Precision and accuracy

The method inter-day and intra-day precision was evaluated from QC solutions at low and high levels over the three-day period. The results are summarized in Table 5. The average intra-day precision of Day 1 (n = 6), Day 2 (n = 6), and Day 3 (n = 12) was determined to be 5.2 % at low QC level and 4.1 % at high QC level. The interday precision obtained from a total of 24 replicates over the three-day analysis period was 5.0 % at low QC level and 3.8 % at high QC level. The average detection accuracy from the 24 replicates was 103.2 % at low QC level and 97.3 % at high QC level.

Table 4. Accuracy, reproducibility, and response factors at the eight calibration levels. These results were generated from triplicate analysis in a three day time period.

| Cystine concentration (µM)  | 0.02  | 0.04 | 0.1  | 0.2  | 0.4  | 1     | 2     | 4    |
|-----------------------------|-------|------|------|------|------|-------|-------|------|
| Average accuracy (%, n = 3) | 105.3 | 95.2 | 95.5 | 98   | 97.8 | 100.6 | 101.2 | 99.7 |
| Precision (% RSD, n = 3)    | 4.5   | 2.3  | 1.4  | 6.2  | 5.6  | 3.3   | 2.0   | 1.4  |
| Response Factor (RF)        | 0.62  | 0.56 | 0.56 | 0.58 | 0.58 | 0.59  | 0.60  | 0.59 |



Figure 3. Calibration curve of cystine  $(0.02 - 4 \mu M)$  in WBC lysate.

Table 5. Accuracy, intra- and inter-day precision results determined from low and high level QC solutions.

| QC levels | Intra-day<br>Day 1<br>(n = 6) | precision<br>Day 2<br>(n = 6) | (% RSD)<br>Day 3<br>(n = 12) | Inter-day precision (% RSD)<br>Day 1 – Day 3<br>(n = 24) | Accuracy (%)<br>Day 1 – Day 3<br>(n = 24) |
|-----------|-------------------------------|-------------------------------|------------------------------|----------------------------------------------------------|-------------------------------------------|
| Low       | 5.5                           | 5.9                           | 4.3                          | 5.0                                                      | 90.0 - 113.9                              |
| High      | 3.4                           | 5.6                           | 3.4                          | 3.8                                                      | 89.3 – 105.6                              |

## Quantitation of cystine in WBCs

The WBC cystine concentrations from 23 incurred samples were determined in triplicate using the HRAM method and the results range from 0.14 to 9.44 µM (Table 6). Great precision (% RSD < 5) was observed in the quantitative measurements. These Q-TOF HRAM quantitation results were compared to those obtained using the MRM method. The relative bias values were calculated and listed in Table 6 and the correlation plot is illustrated in Figure 4. The excellent bias of 0–19 % with an average of 5.2 % from the 23 incurred samples and the correlation coefficient (R<sup>2</sup>) of 0.998 demonstrate the consistency of the two methods and, more importantly, the comparable quantitation capability of Q-TOF HRAM methods to more conventionally used MRM methods in complex biological matrices.



Figure 4. Correlation plot of WBC cystine levels measured for 23 incurred, retested samples using the Q-TOF HRAM method and the MRM method.

Table 6. Cystine concentrations measured in WBCs of 23 incurred samples using the Q-TOF HRAM method and the MRM method.

| Sample number | Cystine concentration (µM)<br>QTOF HRAM | QQQ MRM | % Bias |
|---------------|-----------------------------------------|---------|--------|
| 1             | 0.16                                    | 0.17    | -7     |
| 2             | 0.14                                    | 0.16    | -8     |
| 3             | 0.19                                    | 0.19    | -2     |
| 4             | 0.16                                    | 0.19    | -19    |
| 5             | 0.22                                    | 0.20    | 8      |
| 6             | 0.52                                    | 0.46    | 13     |
| 7             | 0.43                                    | 0.42    | 2      |
| 8             | 0.68                                    | 0.62    | 9      |
| 9             | 0.78                                    | 0.82    | -4     |
| 10            | 0.91                                    | 0.87    | 5      |
| 11            | 1.26                                    | 1.25    | 1      |
| 12            | 1.37                                    | 1.33    | 3      |
| 13            | 1.20                                    | 1.20    | 4      |
| 14            | 1.59                                    | 1.59    | 3      |
| 15            | 1.91                                    | 1.91    | -8     |
| 16            | 1.93                                    | 1.93    | -2     |
| 17            | 2.61                                    | 2.61    | 1      |
| 18            | 2.80                                    | 2.80    | -4     |
| 19            | 2.61                                    | 2.61    | 0      |
| 20            | 3.58                                    | 3.58    | -8     |
| 21            | 2.94                                    | 2.94    | -2     |
| 22            | 5.62                                    | 5.62    | 4      |
| 23            | 9.46                                    | 9.46    | 3      |
| Average       |                                         |         | 5.2    |

## Comparison of Q-TOF HRAM and MRM methods

Table 7 summarizes the comparison of assay performance parameters achieved using the Q-TOF HRAM method and the MRM method. The HRAM method described in this application note and the MRM method give very comparable linearity, accuracy, and precision. Notably, the LOQ level of the HRAM method (40 fmol on-column) in WBC lysate is 2.5 times lower than that of the MRM method (100 fmol on-column), which demonstrates the great potential of utilizing HRAM to achieve quantitative bioanalysis with high-degree sensitivity and selectivity. Q-TOF HRAM methods are advantageous to MRM methods in that data are acquired in full scan MS mode so that fragment ion selection and collision energy (CE) optimization steps are not necessary during method development. In addition, excellent mass accuracy (< 2 ppm) was obtained for cystine at the LOQ level and in the incurred samples, which added to the confidence of cystine quantitation using HRAMS.

Table 7. Quantitation performance comparison: Q-TOF HRAM method versus QQQ MRM method.

| Quantitation performan  | ce parameters | QTOF HRAM<br>method | QQQ MRM<br>method |  |
|-------------------------|---------------|---------------------|-------------------|--|
| LOQ (fmol on-column)    |               | 40                  | 100               |  |
| Linearity (0.02 – 4 µM) |               | 0.9999              | 0.9998            |  |
| Accuracy (%)            |               | 89 - 114            | 88 - 109          |  |
| Precision (%RSD)        | Intra-day     | 4.7                 | 4.7               |  |
|                         | Inter-day     | 4.4                 | 4.6               |  |

# Metabolite identification and profiling

Identification and quantitative profiling of the 44 related metabolites (Table 1) were performed in selected samples. A targeted data mining algorithm, FbF was utilized to search the full scan MS data against a personal compound database library that contains the formula and accurate mass information of cystine and the 44 related metabolites (Figure 5). MFG was used to yield match scores for the list of compounds found in FbF using accurate mass and isotope patterns. The triple criteria MFG scores were based on accurate mass of the monoisotopic peak, isotope spacing of the monoisotopic peak and isotope peaks, and the isotope abundance pattern.

| 響№   | 🕮 MassHunter PCDL Manager - E:\Agilent_Data\2010\2010_09_USCD\UCSD_Cystine_Related_Metabolites.cdb 📃 🗖 🗙 |             |           |           |        |             |        |            |          |                    |
|------|----------------------------------------------------------------------------------------------------------|-------------|-----------|-----------|--------|-------------|--------|------------|----------|--------------------|
| ÷ El | e <u>E</u> dit <u>V</u> iew <u>P</u> CDL Links <u>H</u> elp                                              |             |           |           |        |             |        |            |          |                    |
| : D  | Find Compounds 🎒 🔛 📄 🗁 🖗                                                                                 |             |           |           |        |             |        |            |          |                    |
|      | Single Search Batch Search                                                                               | Batch Summ- | vie       | Edit Comp | ounds  | Spectra     | Search | Browse Sp  | ectra    | Edit Spectra       |
|      |                                                                                                          |             | -9        |           |        |             |        |            |          |                    |
|      | oss<br>○ [M+H]+ ○ Neutral ○                                                                              | тм-на       | Formul    | a         |        |             |        | Mo         | olecule: | Structure MOL Text |
| L .  |                                                                                                          |             | Mass      | e: [      |        |             |        | _          | 4        |                    |
|      | Mass tolerance: 10.0 () ppm () mD                                                                        | a           | Nam.      | e.        |        |             |        |            |          |                    |
| R    | etention time                                                                                            |             | Note      | ·S:       |        |             |        |            |          |                    |
|      | Require                                                                                                  |             | IUPA      |           |        |             |        |            |          |                    |
|      | RT tolerance: 0.1 min                                                                                    |             |           |           |        | _           |        |            |          |                    |
|      |                                                                                                          |             |           | 5:        |        |             |        |            |          |                    |
|      |                                                                                                          |             | ChemSpide | e .       |        |             |        |            |          |                    |
|      | ✓ Include neutrals                                                                                       |             |           |           |        |             |        |            | Notes:   |                    |
|      | Include anions                                                                                           |             |           |           |        |             |        |            |          |                    |
| 2    | Include cations                                                                                          |             |           |           |        |             |        |            |          |                    |
|      |                                                                                                          |             |           |           |        |             |        |            |          |                    |
| Sin  | gle Search Results: 46 hits                                                                              |             |           |           |        |             |        |            |          |                    |
|      | Compound Name                                                                                            | Formula     | Mass 🔺    | Anion     | Cation | RT<br>(min) | CAS    | ChemSpider |          | IUPAC Name         |
|      | Mixed disulfide cysteine-cysteamine                                                                      | C5H12N2     | 196.03402 |           |        |             |        |            |          |                    |
|      | S-Sulfacysteine                                                                                          | C3H7N0      | 200.97656 |           |        |             |        |            |          |                    |
|      | Acetylcamitine                                                                                           | C9H17NO4    | 203.11576 |           |        |             |        |            |          |                    |
|      | Pantothenol                                                                                              | C9H19N04    | 205.13141 |           |        |             |        |            |          |                    |
|      | Mixed disulfide Homocysteine-cysteamine                                                                  | C6H14N2     | 210.04967 |           |        |             |        |            |          |                    |
|      | Pantothenate                                                                                             | C9H17N05    | 219.11067 |           |        |             |        |            |          |                    |
|      | Cystathionine                                                                                            | C7H14N2     | 222.06743 |           |        |             |        |            |          |                    |
|      | Cystine                                                                                                  | C6H12N2     | 240.02385 |           |        |             |        |            |          |                    |
|      | D4-Cystine                                                                                               | C6H8D4      | 244.04896 |           |        |             |        |            |          |                    |
| <    |                                                                                                          |             | 1111      |           |        |             |        |            |          | >                  |

Figure 5. Personal compound database library (PCDL) established for cystine and 44 related metabolites in WBC lysate.

As summarized by Table 8, cystine and 11 related metabolites were found and identified in the WBC lysate of incurred sample # 21 using FbF with average mass errors (MS) < 1 ppm and MFG scores > 90. Figure 6 and Figure 7 illustrate the MS spectra, isotope patterns, and MFG results for selected metabolites, for example, glutathione (reduced), and acetylcarnitine. Notably, excellent mass accuracy with average mass errors < 2 ppm was observed for the isotopes (M+1, M+2, and M+3) of glutathione (reduced) and acetylcarnitine, demonstrating the high sensitivity and in-spectrum dynamic range of the Agilent 6530 Accurate-Mass Q-TOF LC/MS System.

Table 8. Cystine and 11 related metabolites identified in the WBCs of incurred sample #21 using FbF in MassHunter Qualitative Analysis software.

| : 😭 C | GeopoundList X                                 |       |          |             |                   |              |         |          |         |                 |  |  |
|-------|------------------------------------------------|-------|----------|-------------|-------------------|--------------|---------|----------|---------|-----------------|--|--|
| : 🟥   | 🛗 Automatically Show Columns   🛗 🖼 ½ 🛱 🙊 🎭 🎥 🎉 |       |          |             |                   |              |         |          |         |                 |  |  |
|       | Name 🛛 🏹                                       | RT 🗸  | Mass 🛆 🗸 | Mass (Tgt 🔽 | Diff (Tgt, ppm) 🔽 | Formula 🖓    | Score 🖓 | Height 🔽 | Area 🛛  | Algorithm 🖓     |  |  |
|       | Serine                                         | 2.202 | 105.0427 | 105.0426    | 1.34              | C3H7NO3      | 97.77   | 61504    | 406046  | Find By Formula |  |  |
|       | Hypotaurine                                    | 2.073 | 109.02   | 109.0198    | 2.25              | C2H7NO2S     | 99.22   | 670588   | 3910317 | Find By Formula |  |  |
|       | Taurine                                        | 1.796 | 125.0147 | 125.0147    | 0.34              | C2H7NO3S     | 97.88   | 573044   | 3474239 | Find By Formula |  |  |
|       | 5-0xoproline                                   | 1.87  | 129.0426 | 129.0426    | 0.2               | C5H7NO3      | 99.88   | 475547   | 2099274 | Find By Formula |  |  |
|       | L·Lysine                                       | 4.53  | 146.1053 | 146.1055    | -1.85             | C6H14N2O2    | 99.46   | 25997    | 256411  | Find By Formula |  |  |
|       | 0-Acetylserine                                 | 2.184 | 147.0533 | 147.0532    | 0.8               | C5H9NO4      | 99.46   | 1628564  | 8347389 | Find By Formula |  |  |
|       | Methionine                                     | 2.332 | 149.051  | 149.0511    | -0.63             | C5H11NO2S    | 78.78   | 54696    | 236942  | Find By Formula |  |  |
|       | Cysteinylglycine                               | 2.165 | 178.0411 | 178.0412    | -0.52             | C5H10N2O3S   | 77.22   | 9768     | 61794   | Find By Formula |  |  |
|       | Acetylcarnitine                                | 3.551 | 203.1158 | 203.1158    | 0.38              | C9H17NO4     | 97.6    | 72447    | 128949  | Find By Formula |  |  |
| •     | Cystathionine                                  | 2.646 | 222.0673 | 222.0674    | -0.36             | C7H14N2O4S   | 90.52   | 14704    | 169673  | Find By Formula |  |  |
|       | Cystine                                        | 2.64  | 240.0241 | 240.0239    | 0.96              | C6H12N2O4S2  | 92.77   | 37428    | 329261  | Find By Formula |  |  |
|       | D4-Cystine                                     | 2.677 | 244.049  | 244.049     | 0.04              | C6H8D4N2O4S2 | 97.09   | 8623     | 67312   | Find By Formula |  |  |
| ÷     | Glutathione (reduced)                          | 2.165 | 307.0845 | 307.0838    | 2.2               | C10H17N306S  | 97.54   | 496473   | 2913303 | Find By Formula |  |  |
| <     |                                                |       |          | Ш           |                   |              |         |          |         | >               |  |  |



Figure 6. Reduced glutathione MS spectrum (A), isotope patterns (inset), and MFG results (B) from incurred sample # 21.

### Conclusions

This application note describes a high resolution accurate mass Q-TOF LC/MS method with excellent sensitivity and mass accuracy for simultaneous quantitative and qualitative analysis of small molecular metabolites in complex biological samples.

- The Q-TOF HRAM method demonstrates excellent sensitivity with LOQ of 0.02 μM and 40 fmol on-column for cystine in WBCs.
- Calibration curves in WBCs show excellent linearity ( $R^2 > 0.9999$ ) over the dynamic range of 0.02–4  $\mu$ M.
- Assay statistics for accuracy (88–114 %), intra-day precision (% RSD < 5.9 %), and inter-day precision (% RSD < 5.0 %) were well within accepted limits.
- The concentrations of cystine were measured in WBCs with good precision (% RSD < 5.0 % in triplicate).
- Comparable quantitation capability in WBCs was demonstrated and consistent quantitation results for incurred samples were obtained using the Q-TOF HRAM method and the MRM method.
- Eighteen related metabolites were identified and quantitatively profiled in WBCs with high scores.
- Accurate mass results were obtained with average mass errors of < 1 ppm and match scores > 90.
- Powerful software processing tools (MassHunter Qual) with sophisticated data mining and feature identification algorithms (FbF and MFG) greatly facilitate metabolite identification and profiling.





-4.2

-20.55

1096.

1.5

206.1323 206.1281

#### References

1. Pharmaceutical LC/MS Solutions from Agilent Technologies. *Agilent application note 5990-5854EN*.

2. van der Heeft, E., *et al.* Full-scan accurate mass selectivity of ultraperformance liquid chromatography combined with time-of-flight and orbitrap mass spectrometry in hormone and veterinary drug residue analysis. *J. Am. Soc. Mass Spectrom.*, **2009**, 20:451-463.

3. Zhang, N.R., *et al.* Quantitation of small molecules using high-resolution accurate mass spectrometers – a different approach for analysis of biological samples. *Rapid Commun. Mass Spectrom.*, **2009**, 23:1085-1094.

4. Rousu, T., Herttuainen, J., and Tolonen, A. Comparison of triple quadrupole, hybrid linear ion trap triple quadrupole, time-of-flight and LTQ-Orbitrap mass spectrometers in drug discovery phase metabolite screening and identification in vitro – amitriptyline and verapamil as model compounds. *Rapid Commun. Mass Spectrom.*, **2010**, 24:939-957.

5. An LC/MS Metabolomics Discovery Workflow for Malaria-Infected Red Blood Cells using Mass Profiler Professional Software and LC-Triple Quadrupole MRM Confirmation. *Agilent application note 5990-6790EN.* 

#### www.agilent.com/chem/metabolomics

For Research Use Only. Not for use in diagnostic procedures. Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2012 Published in the USA, March 19, 2012 5990-9234EN



## **Agilent Technologies**