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Abstract
The surge of interest in the role of the human gut microbiota in health and disease 
research has created a demand for quantifying community-derived metabolites 
representing diverse chemical classes. Agilent has developed a highly reproducible 
and robust ion-pair reversed-phase (IP-RP) dynamic multiple reaction monitoring 
(dMRM) method that provides efficient separation of over 200 central carbon 
metabolites. This Application Note focuses on extending the IP-RP dMRM method to 
the measurement of tryptophan and indole metabolites that have been associated 
with effects on host metabolic and immunologic pathways. The extended IP-RP 
dMRM method enables sensitive detection of these compounds across a wide 
dynamic range in relevant biological samples.

Quantitation of Gut Microbiota‑Derived 
Indole Metabolites by Ion Pairing 
dMRM LC/QQQ
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Introduction
The gut microbiota, composed of tens 
of trillions of microbes belonging to all 
three domains of life, but dominated 
by members of bacteria, produces 
many classes of metabolites that have 
wide‑ranging effects on host biology.1–4 

The indole catabolites of the essential 
amino acid tryptophan constitute an 
exemplary class of microbial metabolites 
that confer beneficial effects upon 
host physiology.

Dietary tryptophan has multiple fates 
when ingested: 

•	 Incorporation into peptides and 
proteins

•	 Catabolism by the host to kynurenine 
and serotonin through the action of 
the rate-limiting enzymes tryptophan 
2,3-dioxygenase and tryptophan 
hydroxylase, respectively

•	 Transformation by members of the 
gut microbiota to various catabolites, 
including tryptamine, indole‑3-
acetic acid, indole‑3‑propionic acid, 
indole‑3‑lactic acid, and indole5,6 

The latter metabolite is further sulfated 
in the liver to indoxyl sulfate to enhance 
its eventual clearance.

Indole metabolites modulate host 
biology though diverse mechanisms 
of action. For example, Clostridium 
sporogenes metabolizes tryptophan 
to indole-3-propionic acid, which is an 
endogenous ligand for the pregnane X 
receptor (PXR), which promotes 
gut barrier integrity by inducing the 
expression of tight junction proteins such 
as Occludin, Zonulin-1, E-cadherin, and 
Claudin-7.7 Similarly, indole acrylic acid 
produced by some Peptostreptococcus 
species has anti-inflammatory effects; 
treatment of human peripheral blood 
mononuclear cells with this compound 
leads to reduced IL-6 and IL-1 secretion 
in response to LPS stimulation.8 

Some indole metabolites are 
endogenous ligands of the aryl 
hydrocarbon receptor (AhR), which 
mediates anti‑inflammatory and 
anti‑microbial effects through effects 
on intra-epithelial γδ T cells, regulatory 
T cells, and cytokine production, 
including IL-22.9,10 As a case in point, 
microglial cells use tryptophan‑derived 
indoxyl-3-sulfate in an Ahr-dependent 
manner to ameliorate the symptoms 
of experimental autoimmune 
encephalomyelitis.11 A recent study 
demonstrated that Lactobacillus reuteri 
is a producer of indole-3-lactic acid, 
which activates AhR, and leads to 
reprogramming of CD4+ intraepithelial 
lymphocytes into CD8aα cells.12 
Interestingly, patients with Crohn’s 
disease and ulcerative colitis also have 
reduced fecal levels of tryptophan and 
indole-3-acetic acid, and increased 
levels of kynurenine.13,14 Tryptamine 
activates the epithelial GPCR 5-HT4 
receptor and increases colonic anion 
flux and secretion in a cAMP-dependent 
manner.15 

While our understanding of gut 
microbiota-derived metabolites 
is accruing, assays for accurate 
quantification of metabolites across 
diverse chemical classes are not widely 
available. Recently, Agilent developed 
an IP-RP dMRM method that 
provides efficient separation of over 
200 metabolites representing diverse 
chemical classes, many a part of central 
carbon metabolism across organisms. 
This Application Note describes steps 
for extending the IP-RP dMRM method 
to cover a panel of indole metabolites 
of general interest, including a 
microbial‑derived subset. 

Experimental

Sample preparation
Indole-3-acetamide, indole‑3‑acetic 
acid, indole-3-butyric acid, 
indole‑3‑carboxaldehyde, 
indole‑3‑carboxylic acid, indole‑3‑lactic 
acid, indole‑3-propionic acid, 
indole‑3‑pyruvic acid, indoxyl sulfate, 
tryptophol, kynurenic acid, kynurenine, 
quinolinic acid, xanthurenic acid, and 
5-hydroxytryptophan were purchased 
from Sigma-Aldrich and prepared at a 
concentration of 1 mg/mL in methanol. 
Standards were combined into three 
mixtures where each mixture contained 
no compounds whose molecular weights 
were within two daltons of each other. 
The final concentration of each standard 
in the mixture was 100 µg/mL mixture.

Instrumentation
•	 Agilent 1290 Infinity II LC

•	 Agilent 6470A triple quadrupole 
LC/MS

MS parameters, chromatographic 
conditions, and gradient were taken 
from a metabolomics dMRM method 
(described in the Agilent Quick Start 
Guide, “MassHunter Metabolomics 
Dynamic MRM Database and Method”, 
G6412-90006 Revision A, 5991‑6467EN)

Adding new compounds to the 
Agilent metabolomics dMRM method
Agilent's dynamic multiple reaction 
monitoring (dMRM) uses retention 
time scheduling of MRM transitions to 
allow more metabolites to be analyzed 
in a single run without sacrificing 
data quality. Therefore, to add new 
compounds to the metabolomics dMRM 
method, the retention time of new 
compounds must first be determined, 
then compound-specific acquisition 
parameters can be optimized. 
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•	 Step 1. To enable us to find the 
retention time of the new indole 
metabolites to be added to the 
dMRM method, we modified the 
dMRM method to a scan method.

•	 Step 2. We optimized the MRM 
transition, fragmentor, and 
collision energy parameters of the 
indole metabolites using Agilent 
MassHunter Optimizer. We used 
Optimizer’s injection mode for all 
new compounds. 

•	 Step 3. When Optimizer was finished 
optimizing the MRM acquisition 
parameters, we imported the 
retention time, MRM transitions, 
fragmentor, and collision energy 
parameters into the original 
metabolomics dMRM method, and 
saved it to a new file name.

Table 1. Tryptophan and indole compounds added to dMRM method.

Compound Retention Time Fragmentor MRM Collision Energy (V)

Indole-3-acetamide 12.1 110 173.1 & 130.0 17

Indole-3-acetic acid 16.8 70 174.1 & 130.0 5

Indole-3-butyric acid 17.9 140 202.1 & 158.1 17

Indole-3-carboxaldehyde 14.9 140 144.0 & 115.0 33

Indole-3-carboxylic acid 15.3 100 160.0 & 116.0 17

Indole-3-lactic acid 16.5 140 204.1 & 158.0 17

Indole-3-propionic acid 16.7 130 188.1 & 59.1 13

Indole-3-pyruvic acid 17.3 90 202.1 & 174.0 5

Indoxyl sulphate 16.4 100 212.0 & 80.0 25

Tryptophol 15.9 80 160.1 & 116.0 17

Kynurenic acid 15.5 80 188.0 & 144.0 13

Figure 1. Composite dMRM chromatogram of microbial-derived indole metabolites.
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Results and discussion
The microbiota-derived indole 
metabolites examined were well resolved 
using this modified IP-RP dMRM 
method (Figure 1). There was excellent 

reproducibility (RSD <5% from triplicate 
determinations) of both retention time 
and peak area response including at the 
limit of quantitation, which was below 
100 nM for all metabolites tested.
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The calibration curves for all the 
standards showed excellent linearity 
(R2 >0.999) and wide dynamic range 
(>three orders of magnitude). Figure 2 
shows examples of calibration curves for 
six representative metabolites.

Conclusion
This Application Note describes a 
modification to extend an existing 
IP‑RP dMRM metabolomics method 
to detect and measure a wider panel 
of important microbial metabolites. 
Reliable quantitation of the added 
tryptophan and indole metabolites was 
achieved using the modified Agilent 
IP-RP dMRM method. The analytical 
sensitivity, linearity, and dynamic range 
of measuring tryptophan and indole 
metabolites show that this method is 
applicable for microbiome applications in 
biological samples. 

See the following recently published 
study that uses this method to measure 
the levels of indole metabolites in 
biologic samples: 

Gehrig, J. L. et al. Effects of 
Microbiota‑Directed Foods in Gnotobiotic 
Animals and Undernourished 
Children. Science 2019, 365, eaau4732.

Figure 2. Calibration curves of for selected compounds.
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