Dissolution Reference Guide

Parameter	Internationally Harmonized Pharmacopeia	FDA (DPA-LOP.002)	ASTM (E2503-07)	USP Toolkit (2.0 Draft)
Basket/Paddle Depth	25 ± 2 mm	25 ± 2 mm	$25 \pm 2 \text{ mm}$ (or within 8% of desired height)	23-27 mm
Rotational Speed	±4% of specified rate	±2 RPM of target	Within 2% or ±2 RPM of stated rate (use larger)	±1 RPM of set value
Shaft Wobble	No significant wobble	≤1.0 mm total runout	≤1.0 mm total runout	<1.0 mm total wobbl
Shaft Verticality	Not measured	≤0.5 ° from vertical	Within bubble	NMT 0.05° from 90.0
Basket Wobble	±1 mm	≤1.0 mm total runout	≤1.0 mm total runout	<1.0 mm total wobbl
Vessel/Shaft Centering	NMT 2 mm from center axis	≤1.0 mm from center line	≤1.0 mm from center line	NMT 2.0 mm for 360° rotation
Vessel Verticality	Not measured	≤1.0 ° from vertical from two positions 90 ° apart	≤1.0 ° from vertical from two positions 90 ° apart	NMT 0.5 ° from 90.0
Vessel Plate Level	Not measured	Not measured	Not measured	Inclination NMT 0.5° two orthogonal direc
Performance Verification Test	USP Prednisone Tablets RS	Not measured	Not measured	USP Prednisone Tablets RS

1. Dissolution <711>, USP 32 NF 27, 2009, Vo

Table 5: Mathematical Models Used To Describe Drug Dissolution Curves		
Zero Order	$Q_t = Q_0 + K_0 t$	
First Order	$\ln Q_t = \ln Q_0 + K_1 t$	
Second Order	$Q_t/Q_{\infty} = (Q_{\infty} = Q_t)K_2t$	
Hixson-Crowell	$Q_0^{1/3} - Q_t^{1/3} = K_s t$	
Weibull	$\log\left[-\ln(1 - (Q_t/Q_{\infty}))\right] = b \cdot \log t - \log a$	
Higuchi	$Q_t = K_H \sqrt{t}$	
Baker-Lonsdale	$(3/2)[1 - (-1(Q_t/Q_{\infty}))^{2/3}] - (Q_t/Q_{\infty}) = Kt$	
Korsmeyer-Peppas	$Q_t/Q_{\infty} = K_k t^n$	
Quadratic	$Q_t = 100(K_1t^2 + K_2t)$	
Logistic	$Q_t = A/[1 + e^{-K[t-y]}]$	
Gompertz	$Q_t = A e^{-e \cdot K(t \cdot \gamma)}$	
Hopfenberg	$Q_t/Q_{\infty} = 1 - [1 - k_0 t/C_0 a_0]^n$	
Reference: Costa, P.; Lobo, J. Modeling and Comparison of Dissolution Profiles. <i>Eur. J. Pharm. Sci.</i> 2001, 13, 123-133.		

Table 6: Summary of Fundamental Dissolution Theories			
Theory	Equations	Associated Characteristics	
Diffusion Layer			
Fick's First Law	$J_{ix} = Di(\delta c_i / \delta x)$	Eq. 1. Considers diffusion only under steady-state conditions.	
Fick's Second Law	$\delta c/\delta t = D(\delta^2 c/\delta x^2)$	Eq. 2. Used when drug concentration decreases with time; hence, considers non-steady state conditions.	
Noyes and Whitney	$dc/dt = K (c_s - c_t)$	Eq. 3. Description of drug dissolution based on constant surface area.	
Brunner and Tolloczko	$dc/dt = KS(c_s - c_t)$	Eq. 4. Manipulation of Noyes-Whitney's Eq. 3 by incorporation of surface area term S . Proposed the formation of a stagnant layer around the dissolving particle, a layer through which solute diffuses through into the bulk.	
	$dc/dt = kDS/vh (c_s-c_t)$		
Nemst-Brunner	$If c_t << c_s (i.e. <10\%) \rightarrow dc/dt = kDS/vhc_s$	Eq. 5-7. Manipulation of Fick's First Law and expansion of Eq. 4 by incorporation of a diffusion coefficient D , stagnant layer thickness h , and volume of dissolution	
	If v and S are constant \rightarrow $dc/dt = K$	medium v.	
Hixson-Crowell Cube Root	$w_0^{1/3} - w^{1/3} =$ $(4\pi\rho\eta/3)^{1/3} (Dc_s/h\rho)t$ or $w_0^{1/3} - w^{1/3} = Kt$	Eq. 8-9. Originally developed for single particles but has been extended to use in multiparticulate systems.	
Surface Renewal	Vdc/dt = dW/dt = $S(\gamma D)^{1/2} (c_s - c_t)$	Eq. 10. Assumes solid-solution equilibrium is achieved at the interface and that mass transport is the rate-limiting step in the dissolution process.	
Limited Solvation	$G=k_l(c_s-c_t)$	Eq. 11. An intermediate drug concentration less than saturation may exist at the interfacial barrier between the solid surface and solvent. Different faces of a crystal may have different interfacial barriers and, therefore, make different contributions to	

Dissolution Discussion Group (DDG)	www.dissolution.com
Dissolution Technologies Publication	www.dissotech.com
American Association of Pharmaceutical Scientists (AAPS) <i>In Vitro</i> Release Dissolution Testing (IVRDT) Focus Group	www.aapspharmaceutica.com/inside/focus_groups/InVitro/index.asp
US Federal Drug Administration (FDA) Biopharmaceutics Guidance Page	www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm064964.htm
FDA Recommended Dissolution Methods Database	www.accessdata.fda.gov/scripts/cder/dissolution/index.cfm
United States Pharmacopeia (USP)	www.usp.org
European Pharmacopeia (EP) / European Directorate for the Quality of Medicines and Health Care (EDQM)	www.edqm.eu
Japanese Pharmacopeia (JP) / National Institute of Health Science (NIHS)	www.nihs.go.jp/english/index.html

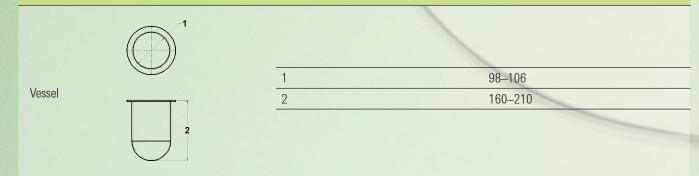

2. Mechanical Qualification of Dissolution Apparatus 1 and 2, FDA DPA-LOP.002, Ver. 2.0, 2006. 3. Standard Practice for Qualification of Basket and Paddle Dissolution Apparatus, ASTM E2503-07, 2007. 4. Dissolution Toolkit Procedures for Mechanical Calibration and Performance Verification Test, Ver. 2.0, USP, March 22, 2010. 5. FIP Position Paper on Qualification of Paddle and Basket Dissolution Apparatus, AAPS PharmSciTech 16 July, 2009.

Table 2: Dissolution Apparatus Component Specifications

Component	Dimension Reference	Internationally Harmonized Specification (mm)
	1	9.4 - 10.1
	2	19.0 ± 0.5
	3	4.0 ± 1.0
1	4	74.0 - 75.0
Paddle 8-11-6	5	42.0 ± 1.0
2 9	6	1.2 ± 0.2
	7	41.5 ± 1.0
	8	NMT 0.5
	9	NMT 0.5

		1	20.2 ± 1.0
	Basket 7,8	2	22.2 ± 1.0
		3	37.0 ± 3.0
		4	27.0 ± 1.0
		5	25.0 ± 3.0
		6	20.2 ± 1.0
		7 wire diameter	0.25 - 0.31
		8 opening	0.36 - 0.44

	1	9.4 - 10.1	
Basket Shaft		2	5.1 ± 0.5
	3	2.0 ± 0.5	
	73-3	4	3 clips at 120 °
	4		1

Reference: Dissolution <711>, USP 32 NF 27, 2009, Vol. 1.

Table 3: Recommended Mechanical Qualification Frequency

Initial Component Verification	 Vessels dimensions Basket/shaft dimensions Paddle dimensions 	Require documentation of each component's individual dimensions including vessel cylinder and hemisphere. Certificate of Conformance (COC) acceptable if individual measurements are supplied with each component. General certificates stating the product is manufactured according to USP, without individual measurements, does not satisfy this requirement.
Mechanical Parameters to be Verified Before Testing	 Shaft wobble Paddle shaft verticality Shaft verticality Basket wobble Vessel centering Vessel verticality Basket depth Paddle depth Rotational speed Temperature sensor 	 Verification of proper adjustment must be documented: Prior to use As shafts and vessels are exchanged At a scheduled frequency in accordance with an established written program per 21 CFR Part 211.160 At least every three months

Key to symbols and abbreviations: J_{ix} : (mg/cm² s⁻¹); D_i : diffusion coefficient; $\delta c_i / \delta x$: concentration gradient; $\delta c / \delta t$ or dc/dt: drug dissolution rate; K: first-order dissolution constant; cs: equilibrium drug concentration; ct: drug concentration at time t;

k: dissolution constant; S: surface area; v: volume of dissolution medium; h: thickness of stagnant layer; w₀: initial powder weight; w: powder weight at time t; p: particle density; η : viscosity; h: thickness of diffusion layer; γ . interfacial tension; G: dissolution rate per unit area; k; effective interfacial transport constant.

Reference: Pillay, V.; Fassihi, V. Unconventional Dissolution Methodologies, J. Pharm. Sci. 1999, 88, No. 9, 843-851.

Table 7: Summary of Basic Theories of Dissolution Profile Analysis

Theory	Equations	Associated Characteristics
Wagner	$\log (\boldsymbol{w}^{\infty} - \boldsymbol{w}) = \log \boldsymbol{M} - \boldsymbol{k}_{s}/2.303 (\boldsymbol{t} - \boldsymbol{t}^{0})$ where $\boldsymbol{M} = \boldsymbol{K}/\boldsymbol{k}_{s}\boldsymbol{C}_{s}\boldsymbol{S}^{0}$	Eq. 12-13. Relates apparent first-order kinetics under sink conditions to the distribution of available surface area and not dissolution per se. In case of exponential decrease in surface area with time, then first-order kinetics could be related to dissolution data.
Kitazawa	$\ln w^{\infty}/(w^{\infty} - w) = K't$	Eq. 14. Assumes constant surface as long as sink is maintained. Under these conditions C^{∞} is not always equal to C_s . A plot of $\ln w^{\infty}/(w^{\infty} - w)$ vs. <i>t</i> yields a straight line with slope as the dissolution rate constant K'.
El-Yazigi	$(100 - f_s) = 100k_d/(k_d - k_s)e^{-k_st} - 100k_s/(k_d - k_s)e^{-k_dt}$	Eq. 15. Disintegration and dissolution are consecutive first-order processes. Because disintegration is usually much faster than dissolution, the semi log plot of $(100 - f_s)$ vs. <i>t</i> yields a biexponential curve.
Carstensen	If q is small and $Flq <<1 \rightarrow$ In $m = -q\theta + \ln m_0$ If q is large \rightarrow In $m = -q\theta + q\theta_2 + \ln m_0 6(Flq)3$	Eq. 16-17. Considered that the dissolution process in the USP basket proceeds in three steps: • Some disintegration but particles not dislodged from basket • More disintegration and particles move out of basket • More disintegration and first particles have completely dissolved. These three phases have to be mathematically explained to calculate the mass of solute undissolved at time $t = 0$.

Key to symbols and abbreviations: w^{∞} : amount of drug in solution at infinite time; ($w^{\infty} - w$): amount of undissolved drug; K: dissolution constant; k_s : dissolution rate constant; t: time in question; t° : time t = 0; C_s : aqueous solubility of drug; S° : surface area at time t° ; K': dissolution constant; f_s : cumulative percentage of drug dissolved at time t; k_d : disintegration rate constant; k_s: dissolution rate constant; q: erosion constant; m: mass of undissolved solute; θ : experimentally observed time; F: factor as a function of the intrinsic dissolution rate (either in basket or vessel), drug solubility, and particle density. Reference: Pillay, V.; Fassihi, V. Unconventional Dissolution Methodologies, J. Pharm. Sci. 1999, 88, No. 9, 843-851.

Table 8: Dissolution Profile Comparison f_{a}

When the two profiles are identical, $f_2=100$. An average difference of 10% at all measured timepoints results in an f_2 value of 50. The FDA set a public standard of f_2 value between 50-100 to indicate similarity between two dissolution profiles.

 $f_2 = 50 \cdot \log \{ [1 + (1/n) \sum_{t=1}^n (R_t - T_t)^2]^{-0.5} \cdot 100 \}$

For a dissolution profile comparison:

At least 12 units should be used for each profile determination. Mean dissolution values can be used to estimate the similarity factor, f₂. To use mean data, the % coefficient of variation at the earlier point should not be more than 20%; should not be more than 10% at other timepoints. For circumstances where wide variability is observed, or a statistical evaluation of f_2 metric is desired, a bootstrap approach to calculate a confidence interval can be performed.

The dissolution measurements of the two products (test and reference, pre- and post-change, two strengths) should be made under the same test conditions. The dissolution timepoints for both profiles should be the same, e.g., for immediate release products 15, 30, 45 and 60 minutes, for extended release products 1, 2, 3, 5 and 8 hours.

Because f₂ values are sensitive to the number of dissolution timepoints, only one measurement should be considered after 85% dissolution of the product.

For rapidly dissolving products, i.e., more than 85% in 15 minutes or less, a profile comparison is not necessary.

An f₂ value of 50 or greater (50-100) ensures sameness or equivalence of the two curves and, thus, the performance of the two products.

Reference: Shah, V.; Tsong, Y.; Sathe, P.; Williams, R. Dissolution Profile Comparison Using Similarity Factor f₂, Dissolution Technologies 1999, 6, Issue 3.

Table 9: Agilent Dissolution Seminar Series

Designed for new or experienced dissolution analysts, the course emphasizes basic dissolution Fundamentals of Dissolution fundamentals and theory. Includes focused discussions on dissolution apparatus, mechanical and performance verification, dissolution technique and regulatory issues.

Advanced Dissolution: Principles and Theory Brinciples and Theory nles and Theon

Controlled Release Society (CRS) www.controlledrelease.org

Table 11: Common Dosage Forms and Typical Test Conditions with Basket and Paddle Dissolution Apparatus

Dissolution Apparatus	
Dosage Forms	Test Conditions
Capsules and Tablets	
Immediate and Modified Release	Basket (USP Apparatus 1), typical speeds 50, 75 or 100 RPM;
	Paddle (USP Apparatus 2), typical speed 50 or 75, with sinker option for floating forms
Enteric-Coated	Basket or paddle: acid stage typically 0.1N HCl followed by buffer stage typically pH 6.8 phosphate
	buffer
	Method A: media addition method
	Method B: media exchange method
Chewables	Paddle with agitation \geq 100 RPM
Osmotics	Basket, paddle with stationary basket method
Swelling Dosage Forms	Basket, paddle, paddle over disk or sinker basket
Suppositories	Basket, slotted basket
Beads	Basket, paddle, sinker basket, fine-mesh basket
Suspensions	Paddle with syringe introduction, suspension cup, basket with fine-mesh, speed 25-50 RPM
Transdermal Systems	Paddle over disk or rotating cylinder
Semisolid	Paddle with suspension cup or mini paddle, 200 mL small-volume vessel and enhancer cell
Powders	Intrinsic dissolution holder, paddle with powder in capsule and sinker, or fine-mesh basket

Table 12: Aberrant Dissolution Data Checklist

Laboratory Investigation Triggers

• Out of specification results (OOS) • Possible sample mix-up or dilution error • Multi-timepoint results decrease more than 5% • Results > upper content uniformity limit • Results > 125% • Stability results > 10% of the previous timepoint • Stability packaging configurations > 15% agreement (same timepoint)

Requirements of the Investigation

• Use cause and effect relationships as a tool for investigation • Look for key factors that cause high or low dissolution results (temperature, speed, etc.) • Ensure samples have been retained

Dissolution Apparatus		
Baskets	 Conform to USP or compendial specifications? Corrosion present? Straight with parallel and smooth surface? Frayed appearance? Clips hold basket tightly? 	
Paddles	 Conform to USP or compendial specifications? Surface irregularity with peeling Teflon coating or pitted surface? Straight with perpendicular blade attached? Has the validated sinker been used (tremendous variation)? 	
Sampling and Filtering — dissolution does not stop until filtration is performed	 Correct sampling position? Separate, clean, dry equipment used? Sampling materials validated? Samples filtered immediately? Proper filters used? Filters validated for drug adsorptivity at the lowest concentration? Proper amount of sample discarded? Centrifuge is not an option to clarify dissolution samples. 	
Vessels	 Scrupulously clean, no residue, film or buildup? Surface irregularities; cracks, scratches, chips? Vessels should be numbered and in dedicated positions. 	
Vibration	 See Table 4: Sources of Vibration Affecting Dissolution Apparatus. Sources of vibration must be removed from the dissolution laboratory. 	
Media, Volumetric Measurement	 Proper and validated deaeration technique used? Media gently transferred to the vessel? Media equilibrated to 37.0 ± 0.5 °C prior to test? Were bubbles or air films present during testing? 	

Required Before Each Test		Principles and Theory vivo correlation and the use of dissolution data relating to bioequivalence. Dissolution Method Development and Validation Lectures provide regulatory guidance and practical knowledge required for rugged, biorelevant dissolution methods. Developed for experienced R&D, method development or QC chemists interested in developing discriminating <i>in vitro</i> dissolution methods.	and Deaeration	 Was the proper volumetric glassware used to deliver the media? Has the volume been kept to 1% accuracy during the test? Have proper covers been used to minimize evaporative loss? Preheated media may be weighed with great accuracy. 	
	 Vibration Centering Water bath level 	significant vibration in the dissolution apparatus or medium.	These two-day courses may be held at either a Agilent facility or on-site at a customer facility. For detailed Seminar Series information, visit www.agilent.com	Mechanical and Performance Qualification	 See Table 3: Recommended Mechanical Qualification Frequency. Apparatus must be maintained in a qualification schedule.
Scheduled Maintenance	Belt tension	Documentation of routine preventative maintenance is required. Repair and adjustment must be evaluated to determine if such changes have an impact on the integrity of operation of the dissolution apparatus.		Dissolution Procedure	 Correct test method used? Raw data properly documented and scientifically correct? Temperature, pH, media preparation correct? Correct reference standard(s) used, prepared and within expiration? Analytical solution properly stored?
References:1. Mechanical Qualification of Diss2. Standard Practice for Qualificat		A DPA-LOP.002, Ver. 2.0, 2006. ution Apparatus, ASTM E2503-07, 2007.		Dissolution Analyst	 Analyst been properly trained in dissolution? Analyst been properly trained in the analytical methodology? Test method followed as written?

Enhancer Cell

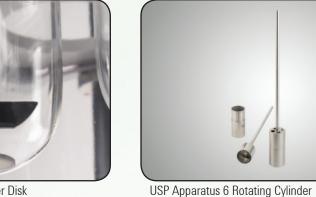
Table 4: Sources of Vibration Affecting Dissolution Apparatus

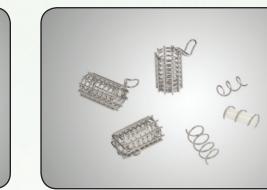
habie in obaloos of theradient, installent, installent, ipparatas				
Benchtop (items to be eliminated from the dissolution environment)	 Unstable bench top composition or construction Fume hood Shakers and mixers Ultrasonic baths Centrifuges Tapped density equipment Sieve testing equipment Loud radios Vacuum pumps Printers and copiers 			
Environmental (factors which contribute to vibration)	 Media prep areas Slamming doors Stairways Production equipment Construction Traffic from pallet jacks and lift trucks Close proximity to railroad 			
Internal	 Drive belt tension or drive mechanism failure Worn or loose parts, pulleys or bearings Lack of lubrication of internal components Circulator touching the apparatus Water bath turbulence, missing deflector Loose paddles or baskets 			

Photo References

USP Apparatus 1 Basket

Intrinsic Dissolution




USP Apparatus 5 Paddle Over Disk

Small-Volume Paddle

Pellicle Formation Problem

JP and USP Sinkers

Coning Problem

This information is subject to change without notice.

© Agilent Technologies, Inc. 2010 Published in USA, September 29, 2010 5990-6492EN

All specifications are current as of August 2010. Specifications are constantly subject to change. Reference your local pharmacopeia or applicable standard for the most current specifications.

