Table 3. Preparation of High-Sensitivity Amino Acid Standard Solutions. Prepare the three highsensitivity standards by mixing together stock solutions in the volumes shown.

	Concentration of Fin	al AA Solutio	ns (pmol/µL)
	90	22.5	9
Take 5 mL 1.8 nmol EAA	5 mL	5 mL	5 mL
Dilute with 0.1 N HCI		15 mL	45 mL
Diluted EAA mix	5 mL	20 mL	50 mL
Take 5 mL diluted EAA mix	5 mL	5 mL	5 mL
Add 1 nmol ISTD solution	5 mL	5 mL	5 mL
EAA-ISTD mix	10 mL	10 mL	10 mL
Take 100 µL EAA-ISTD mix	100 µL	100 µL	100 µL
Add 100 pmol AA standard	900 µL	-	-
Add 25 pmol AA standard	-	900 µL	-
Add 10 pmol AA standard	-	-	900 µL
Final AA Solution with EAA and 50 $pmol/\mu L$	ISTD 1 mL	1 mL	1 mL

Additional Support

For additional technical information, Eclipse AAA Technical Note (Publication Number 5980-1193) is available on the Web at www.agilent.com/chem, or from Agilent technical support at 1-800-227-9770 (U.S. and Canada, or from your local Agilent support organization).

TYPICAL SEPARATIONS

High-Resolution Separation:

(4.6 mm × 150 mm, 5 µm or 3.5 µm column, PN 993400-902, 963400-902) When more resolution is desired than is available from the **high-throughput separation** on a 75-mm column (Figure 1), a 150-mm column length should be used. Figure 4 shows a typical routine-sensitivity, high-resolution separation obtained from two different ZORBAX Eclipse AAA 150-mm length columns – one with 3.5-µm particles and the other with 5-µm particles. The chromatograms show the 338-nm UV signal that detects the OPA-derivatized primary amino acids. These separations are quite similar in appearance, but the chromatogram for the 3.5-µm column demonstrates higher resolution resulting from higher efficiency. Back pressure on the column containing the smaller, 3.5-µm particles is 240 to 300 bar (3,530 to 4,410 psi), while the back pressure of the column having 5 µm particles is 160 to 210 bar (2,350 to 3,090 psi). Thus, if only primary amino acids are of interest and the 15-cm column length is used, the larger 5-µm packing is a better choice because of less system back pressure.

Figure 5B shows the analysis using fluorescence detection. Note the difference in resolution between peaks #21 (lysine) and #22 (hydroxyproline) in Figures 5 and 6. The increase in resolution between these peaks, when using the longer column with smaller particles (150 mm, 3.5 µm),

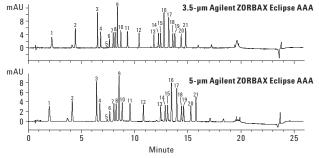


Figure 4. High-resolution analysis of 21 amino acids on the 5-µm and 3.5-µm ZORBAX Eclipse AAA column. Column dimensions are 4.6 mm × 150 mm. See Table 1 for peak identification. Detection: 338 nm (OPA amino acids).

provides a longer time window that facilitates wavelength switching of the DAD or FLD between peaks #21 and #22.

When monitoring at 262 nm (Fig. 5B), a small baseline "hump" elutes between 7 and 10 minutes due to derivatization by-products. Since only the primary AAs are monitored (338 nm) during this time, the "hump" has no impact on their detection or resolution. It is best to monitor at two wavelengths for detection of secondary amino acids such as hydroxyproline. If this is not desirable, wavelength switching can be used.

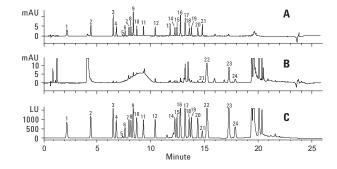


Figure 5. High-sensitivity, high-resolution analysis of amino acids using different detection modes and the Agilent ZORBAX Eclipse AAA protocol. The column dimensions are 4.6 mm × 150 mm, 3.5 µm. See Table 1 for peak identification. Detection: A. 338 nm (OPA amino acids), B. 262 nm (FMOC amino acids), C. fluorescence (see Experimental Conditions)

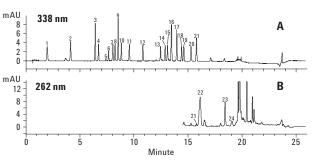


Figure 6. Routine analysis, high resolution of 24 amino acids using the Agilent ZORBAX Eclipse AAA Protocol. The column dimensions are 4.6 mm × 150 mm, 5 µm. See Table 1 for peak identification. Detection: A. 338 nm (OPA amino acids), B. 262 nm (FMOC amino acids).

The specific time to switch fluorescence (or UV) wavelengths may differ due to minor variations in temperature, mobile phase, etc. In Figure 5C the FLD signal monitored at 450 nm (Ex = 340 nm), is programmed to change to 305 nm (Ex = 266 nm) after peak #21 (lysine) elutes but before peak #22 (hydroxyproline) elutes. In this case, the switch was programmed to occur at exactly 15 minutes.

Lysine-Hydroxyproline Separation and Wavelength Switching:

Analysis of lysine and hydroxyproline has a major impact on the choice of detection parameters and column configuration, as well as the resulting run time. Amino acids eluting prior to hydroxyproline (up to and including lysine) are derivatized with OPA and are detected at 338 nm. Hydroxyproline elutes immediately after lysine and is the first FMOC-derivatized amino acid to elute; detection must be at 262 nm. The simplest solution is continuous collection of 338-nm and 262-nm data in two separate signals using the Agilent 1100/1200 DAD or MWD.

If the DAD and MWD are not available, the wavelength collected in a single channel can be switched under carefully chosen conditions, for detection of both OPA- and FMOC-derivatized amino acids. Collection of data in a single channel may be necessary, for instance, when using the Agilent 1100/1200 VWD. Increased resolution between lysine and hydroxyproline is possible when using more-complex gradient profiles.

When hydroxyproline is not of interest in the sample (for example, in analysis of protein hydrolysates), it is possible to use any of the column configurations and switch wavelengths at a time between lysine elution and elution of the first FMOC amino acid (sarcosine or proline). In this scenario, the 4.6 mm × 75 mm column size is adequate and has the advantage of half the analysis time.

ORDERING INFORMATION

п

FI

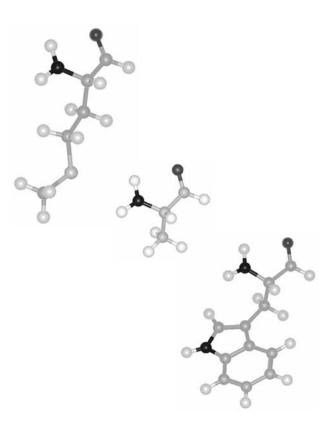
0

Eclipse AAA HPLC Columns

chipse AAA HELC Columnis			
Description	Cize (mm)	Particle Size (µm)	Part Number
•	Size (mm)	4 /	
Analytical routine sensitivity, high resolution	4.6 × 150	5	993400-902
Analytical high-sensitivity, high-resolution vork using the FLD	4.6 × 150	3.5	963400-902
Analytical, routine sensitivity, high throughput	4.6 × 75	3.5	966400-902
Analytical high-sensitivity, high-resolution vork – DAD or FLD	3.0 × 150	3.5	961400-302
Guard (4/pk)	4.6 × 12.5	5	820950-931
Guard hardware kit			820888-901
Derivatization Reagents			
Description Borate buffer, 0.4 M in water, pH 10.2, 100 mL			Part Number 5061-3339
MOC reagent, 2.5 mg/mL in ACN, 1 mL			5061-3337
DPA reagent, 10 mg/mL in 0.4 M borate buffer and 8 mercaptoproprionic acid, 6 × 1 mL ampoules			5061-3335
DTDPA reagent for analysis of cysteine, 5g			5062-2479
/ials Description 100-μL conical insert with polymer feet, 100/pk			Part Number 5181-1270
Amber, wide-opening, write-on, screw-top vial, ? mL,100/pk			5182-0716
Green screw cap, PTFE/silicone septum, 100/pk			5182-0721
Standards Description Amino acid standard in 0.1 N HCI, 10 × 1 mL ampoules			Part Number
I nmol/µL 250 pmol/µL 25 pmol/µL 10 pmol/µL 5upplemental amino acids, NVA, SAR, ASN, GLN, 1RP, and HVP, 1 g each			5061-3330 5061-3331 5061-3332 5061-3333 5061-3334 5062-2478

For more information on our products and services, visit our Web site at www.agilent.com/chem.

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.


Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc. 2008

Printed in the USA June 13, 2008 Pub No. 5980-3088EN

Agilent ZORBAX Eclipse AAA Instructions for Use

INTRODUCTION

An ideal, quantitative amino acid analysis combines speed and sensitivity with reliability of both the derivatization reaction and the analytical technique. These goals are achieved with automated, online derivatization using o-phthalaldehyde (OPA) for primary amino acids and 9-fluorenylmethyl chloroformate (FMOC) for secondary amino acids: the automated derivatization is then integrated with rugged HPLC analysis using the Agilent 1100/1200 HPLC.

The Agilent ZORBAX Eclipse AAA column contains batch-qualified reversed-phase material. When used according to the protocol described above, the column enables the user to separate the amino acids commonly found in protein/peptide hydrolysates.

The A and B mobile-phase components are easy to prepare, and the gradient consists of linear segments. This combination contributes to a rugged protocol that can be accomplished on the Agilent 1100/1200 HPLC using either binary or quaternary solvent-delivery systems.

High-Throughput Routine Analysis: (4.6 mm × 75 mm, 3.5 µm column, PN 966400-902) The chromatogram in Figure 1 illustrates typical routine sensitivity in high-throughput applications that can be obtained on the Agilent 1100/1200 HPLC binary system using the 1100/1200 DAD. A single run can be completed in 14 minutes (including re-equilibration) with adequate resolution. The primary amino acids (OPA-derivatized), shown in Figure 1A, are monitored at 338 nm while the secondary amino acids (FMOC-derivatized), shown in Figure 1B, are monitored at 262 nm. The amount injected of each amino acid was 125 pmoles in 0.5µL. See chromatograms in Figures 4 to 6 for high-resolution separations and details of lysine/hydroxyproline separation and wavelength switching.

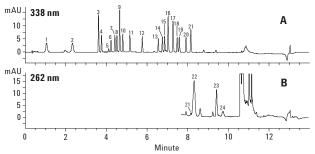


Figure 1. Routine analysis, high-throughput separation of 24 amino acids using the Agilent ZORBAX Eclipse AAA Protocol. The column dimensions are 4.6 mm × 75 mm, 3.5 µm. See Table 1 for peak identification. Detection: A. 338 nm (OPA amino acids), B. 262 nm (FMOC-amino acids).

Table 1. Amino Acid Elution Order Using Eclipse AAA Protocol

Peak No.	Amino Acid	Abbr.	Peak No.	Amino Acid	Abbr.
1	Aspartate	ASP	13	Cystine	CY2
2	Glutamate	GLU	14	Valine	VAL
3	Asparagine	ASN	15	Methionine	MET
4	Serine	SER	16	Norvaline	NVA
5	Glutamine	GLN	17	Tryptophan	TRP
6	Histidine	HIS	18	Phenylalanine	PHE
7	Glycine	GLY	19	Isoleucine	ILE
8	Threonine	THR	20	Leucine	LEU
9	Citrulline	CIT	21	Lysine	LYS
10	Arginine	ARG	22	Hydroxyproline	HYP
11	Alanine	ALA	23	Sarcosine	SAR
12	Tyrosine	TYR	24	Proline	PRO

EXPERIMENTAL CONDITIONS Instrument

The recommended chromatographic system is the Agilent 1100 HPLC: G1312A binary pump with G1315A Diode Array Detector (DAD), 6-mm or 10-mm flow cell, and/or G1315A Fluorescence Detector (FLD). While the results shown here were obtained with the binary pump, this procedure has also been used with the Agilent 1100 quaternary pump (G1311A). The same procedure can be used on the Agilent 1200 HPLC with only minor adjustments. Using the Agilent 1200 RRLC may require more adjustments

require more aujustments.		
ZORBAX Eclipse AAA	ZORBAX Eclipse AAA	ZORBAX Eclipse AAA
4.6 mm × 75 mm, 3.5 μm	4.6 mm × 150 mm, 3.5 μm	3.0 mm × 150 mm, 3.5 µm
Agilent PN 966400-902	Agilent PN 963400-902	Agilent PN 961400-302
Optional guard column	ZORBAX Eclipse AAA	
ZORBAX Eclipse AAA	4.6 mm × 150 mm, 5 μm	
4.6 mm \times 12.5 mm, 5 $\mu m,$ 4/PK	Agilent PN 993400-902	
Agilent PN 820950-931 For use with all 4.6 mm ID colum	nns	

Mobile Phase

A: 40 mM NaH₂PO₄ pH 7.8 [5.5 g NaH₂PO₄, monohydrate + 1 liter water, adjust to pH 7.8 with NaOH solution (10 N)]

B: ACN: MeOH: water (45:45:10, v/v/v)

It is convenient to make Mobile Phase A as a 10X stock solution with no pH adjustment; the buffer should be filtered and the concentrated solution refrigerated. The solution can be kept for several weeks and can be diluted and titrated to pH 7.8, as needed. All mobile-phase solvents should be HPLC grade.

Pump	Settings
Flow.	

2 mL/min 14 min (75-mm column) or 26 min (150-mm column) Stop time: Off Post time:

Auxiliary Pump Setti	ngs:
Max. flow ramp:	100 mL/min
Compressibility A:	50 × 10 ⁻⁶
Minimal Stroke A:	20 µL
Compressibility B:	115 × 10 ⁻⁶
Minimal Stroke B:	Auto

Gradients:

For 75 mm column length		For 150 mm column length		
Time (min)	% B	Time (min)	% B	
0	0	0	0	
1	0	1.9	0	
9.8	57	18.1	57	
10	100	18.6	100	
12 12.5	100	22.3	100	
12.5	0	23.2	0	
14	0			

Note: To extend column life, flush column with 10 column volumes of 100% B when column will not be used for periods of overnight or longer.

Detector Settings

20100101 001	iiiigo				
DAD:					
Required Lan	nps:				
UV lamp:	Yes				
Vis. lamp:	No				
UV:	338 nm, 10 nm bandwidth (bw), reference: 390 nm, 20 nm bw (for OPA-amino				
	acids) 262 nm, 16 nm bw, reference: 324 nm, 8 nm bw (for FMOC-amino acids)				
Peak width:	> 0.03 min (0.	5 sec)			
Slit:	4 nm				
FLD:					
For 75 mm c	olumn		For 150 mm	column	
Time (min)	Ex/Em (nm)	PMT Gain	Time (min)	Ex/Em (nm)	PMT Gain
0	340/450	10	0	340/450	10
8.5*	266/305	9	15*	266/305	9
*The specific	time to switch flu	orescence wavel	engths may diffe	r due to variations	in
temperature,	mobile phase, etc				
Peak width:	> 0.5 mi	n			
Autosampler					

See vial positioning (Figure 2) of a G1313A. Place vials in a similar arrangement for the G1367 or G1329 depending on the installed tray.

Injector program:

Draw 2.5 uL from vial 1 (borate buffer) Draw 0.5 µL from sample (for example, choose vial position #11 for amino acid sample), mix "in washport" if using G1367A/C autosampler Mix 3 µL "in air," max speed, 2x, mix "in washport" if using G1367A/C autosampler Wait 0.5 min Draw 0 µL from vial 2 (needle wash using water in uncapped vial) Draw 0.5 uL from vial 3 (OPA) Mix 3.5 µL "in air," max speed, 6x, mix "in washport" if using G1367A/C autosampler Draw 0 µL from vial 2 (needle wash using water in uncapped vial) Draw 0.5 uL from vial 4 (FMOC) Mix 4 µL "in air," max speed, 6x, mix "in washport" if using G1367A/C autosampler [Optional needle rinse for high-sensitivity use: Draw 0.0 µL from vial 6 (ACN)] Draw 32 µL from vial 5 (water) Mix 18 µL "in air," max speed, 2x, mix "in washport" if using G1367A/C autosampler

Inject Auxiliary:

Draw speed:	200 µL/min
Eject speed:	600 µL/min
Draw position:	0.0 mm

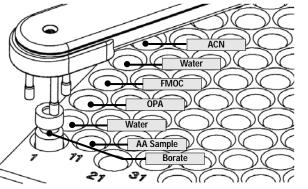


Figure 2. Position of reagent vials in the Agilent 1313A autosampler. This positioning of vials is designed for the listed injector program.

HPLC Columns

Vials:

Conical vial inserts with polymer feet (Fig. 3A) are required to hold the OPA and FMOC reagents because of the limited volumes involved. The inserts are compatible with wide-opening screw-top (Figs. 3B and 3C) or crimp-top vials. For this procedure snap-cap vials should not be used because an airtight seal is needed for both FMOC, because it is highly volatile, and OPA, because it slowly degrades in the presence of oxygen. Be careful not to use vials or caps designed for other instruments, as these may damage the Agilent G1313A autoinjector.

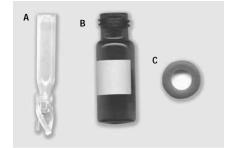


Figure 3. Insert, vial, and cap. Photo of conical insert A (Agilent PN 5181-1270), amber wideopening vial B (Agilent PN 5182-0716), and screw cap C (Agilent PN 5182-0721), for amino acid analysis using the Agilent 1100 autosampler.

Column Compartment Temperature:

40 °C (left and right side) Enable analysis: When temperature is within setpoint ± 0.8 °C

Derivatization Reagents

Borate Buffer:

Agilent PN 5061-3339 Solution of 0.4 N in water, pH 10.2. Refrigerate (4 °C) and dispense as necessary.

FMOC Reagent:

Agilent PN 5061-3337 Pipette 100-µL aliquots of the 1-mL FMOC reagent into conical inserts, cap immediately, and refrigerate (4 °C); solution is useable for 7 to 10 days, maximum after dispensing.

OPA Reagent:

Agilent PN 5061-3335 Pipette 100-µL aliquots of the 1-mL OPA reagent into conical inserts, cap immediately and refrigerate (4 °C); solution is usable for 7 to 10 days, maximum, after dispensing.

Water: Deionized, HPLC grade

See Ordering Information for descriptions and part numbers.

SAMPLE PREPARATION

Note: Each reagent vial should be replaced every day. Each 1 mL ampoule of reagent can last about 10 days (100 µL per day).

Amino Acid Mix for Chromatographic Comparisons

For chromatographic analyses, 17 amino acids from the 250 pmol/µL standard mix (PN 5061-3331), plus citrulline and the six supplemental amino acids were combined at a concentration of approximately 250 pmol/µL. The mixture was prepared by combining the two stock solutions described below. Add 1 µL of the supplemental amino acid stock solution to a fresh aliquot of the 250-pmol standard (100 µL) in the conical vial insert. Mix using a vortex mixer to complete the 24-component standard ready for injection (250 pmol/µL in water/MeOH).

250-pmol standard:

Divide 1-mL ampoule of 250 pmol/µL amino acids (PN 5061-3331) into 100-µL portions in conical vial inserts, cap, and refrigerate aliquots at 4 °C.

Supplemental amino acid stock solution:

Weigh about 0.25 mmoles of each auxiliary amino acid (GLN, ASN, TRP, NVA, HYP, and SAR) from kit (PN 5062-2478) into a 20-mL vial. Add 5 mL deionized water and ultrasonicate in a hot water bath until dissolved. Add another 5 mL water to complete dilution. Store in refrigerator (4 °C). Citrulline (Sigma-Aldrich Co., St. Louis, MO) was added in this mix at the same concentration.

For storage, do not combine supplemental amino acids with amino acid standards. Some of these supplemental amino acids degrade in HCI (especially glutamine, and to a lesser extent, asparagine).

Amino Acid Mix for Calibration Curves

For the construction of calibration curves, 17 amino acids, plus the four extended amino acids, are combined at various concentrations with fixed amounts of internal standards (ISTDs). The ISTDs (norvaline and sarcosine) are part of the supplemental amino acid kit (PN 5062-2478). The remaining amino acids in this kit (GLN, ASN, TRP, and HYP) form the extended amino acids (EAA). To make the appropriate solutions, refer to Tables 2 and 3 for low- and high-sensitivity standards, respectively,

Amino acid standards (10 pmol/µL to 1 nmol/µL):

Divide each 1-mL ampoule of standards PN 5061-3330 through 5061-3334 into 100-µL portions in conical vial inserts, cap, and refrigerate aliquots at 4 °C. Calibration curves may be made using from two to five standards depending on experimental need.

Extended amino acid (EAA) stock solution:

This solution is made using four of the six amino acids in the supplemental amino acid kit (PN 5062-2478). For use with low-sensitivity standards (Table 2), make a 25-mL solution containing 18 nmol/µL of glutamine, asparagine, tryptophan, and 4-hydroxy-proline in deionized water. Sonicate the solution until dissolved. Store the solution refrigerated at 4 °C. For use with highsensitivity standards (Table 3), make a 1.8-nmol/µL solution by diluting 5 mL of the 18-nmol/µL standard with 45 mL deionized H₂O.

Internal standards (ISTD) stock solution:

These solutions are made using two of the six amino acids in the supplemental amino acid kit (PN 5062-2478). For use with low-sensitivity standards (Table 2), make a 25-mL solution containing 10 nmol/µL of norvaline and sarcosine in deionized water. Sonicate the solution until dissolved. Store in refrigerator (4 °C). For use with high-sensitivity standards (Table 3), make a 1-nmol/uL solution by diluting 5 mL of the 10-nmol/uL standard with 45 mL deionized H₂O. Store in refrigerator (4 °C).

Table 2. Preparation of Low-Sensitivity Amino Acid Standard Solutions. Prepare the three lowsensitivity standards by mixing together stock solutions in the volumes shown.

Ca	oncentration of Fin	al AA Solutio	ns (pmol/µL)
	900	225	90
Take 5 mL 18 nmol EAA	5 mL	5 mL	5 mL
Dilute with 0.1 N HCI		15 mL	45 mL
Diluted EAA mix	5 mL	20 mL	50 mL
Take 5 mL diluted EAA mix	5 mL	5 mL	5 mL
Add 1 nmol ISTD solution	5 mL	5 mL	5 mL
EAA-ISTD mix	10 mL	10 mL	10 mL
Take 100 µL EAA-ISTD mix	100 µL	100 µL	100 µL
Add 1000 pmol AA standard	900 µL	-	-
Add 250 pmol AA standard	-	900 µL	-
Add 100 pmol AA standard	-	-	900 µL
Final AA Solution with EAA and 500 pmol/µL $\!$	STD 1 mL	1 mL	1 mL