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Abstract

As increasingly more messenger ribonucleic acid (mRNA)-based medicines

are developed, new methods emerge to analyze the attributes of these
biopharmaceuticals. One such method is MRNA mapping, where RNases are

used to generate oligonucleotides that are amenable to LC/MS using IP-RPLC

or HILIC. The latter methodology offers valuable insights into primary structural
properties such as MRNA sequence, 3' poly A tail length and distribution, 5' capping
structure/capping efficiency, posttranscriptional modifications, and sequence
variants. Oligonucleotide measurement, however, is biased by the adverse effects of
the stainless-steel (SS) surfaces in the LC/MS flow path. To mitigate these effects,
this application note demonstrates IP-RPLC-MS analyses of mRNA digests on a
low-adsorption flow path using an Agilent Altura Oligo HPH-C18 column with Ultra
Inert technology and an Agilent 1290 Infinity Il Bio LC System with an Agilent 6530
LC/Q-TOF.



Introduction

Vaccination technology based on mRNA (see Figure 1)
became known worldwide due to the coronavirus disease
19 (COVID-19) pandemic, which was eventually confined
when regulatory agencies such as the U.S. Food and Drug
Administration (FDA) and the European Medical Agency
(EMA) approved the global administration of the Comirnaty
(BioNTech/Pfizer) and Spikevax (Moderna) vaccines.'?

The mode of operation relies on the mRNA, encapsulated
in lipid nanoparticles (LNPs), which upon entering the cell
is translated into the spike protein of the severe acute
respiratory syndrome coronavirus 2 (SARS-COV-2) virus,
thereby triggering a targeted immune response.®* The
acceptance of these landmark vaccines has subsequently
paved the way for full exploration of the mRNA technology.®”

Cap : 5-UTR: ORF

et |

As illustrated in Figure T, mRNA is composed of
phosphodiester-linked ribonucleosides, e.g., adenosine (A),
guanosine (G), cytidine (C) and uridine (U), in which the
different nucleobases are attached to a ribose moiety. mMRNA
is rather fragile because the ribosyl 2'-hydroxy function

might readily hydrolyze the neighboring phosphodiester
linkage, either purely chemically or catalyzed by a
ribonuclease (RNase). Digestion by these RNases might
occur at the termini (exoribonucleases) or at internal sites
(endoribonucleases) of the RNA sequence. Therefore, the
open reading frame (ORF, Figure 1) of mRNA, which encodes
the protein of interest, is protected by upstream 5-terminal
and downstream 3-terminal untranslated regions (5-UTR and
3-UTR, respectively). These 5- and 3-UTRs are additionally
protected by bearing a cap and a poly A tail, respectively
(Figure 1), which are also prerequisites to enable translation.
The eukaryotic cap structure consists of a 7-methylguanosine
which is 5'=5-linked to the next nucleotide by a triphosphate
moiety. The poly A tail, flanking the 3-UTR, is a long chain of
adenine nucleotides. Its creation typically yields a mRNA pool
displaying a distribution of poly A tail lengths.®°
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Figure 1. An mRNA construct and its constituting nucleotides. The RNA building blocks, called ribonucleotides, consist of a ribose moiety (green background)

to which a nucleobase is attached (blue background; nucleobase/ribonucleoside: A adenine/adenosine, C cytosine/cytidine, G guanine/guanosine, and U
uracil/uridine) and that are connected through phosphodiester linkages. Modified nucleosides such as N1-methylpseudouridine are commonly introduced during
in vitro transcription to enhance mRNA stability, reduce immunogenicity, and improve protein translation. ORF = open reading frame; UTR = untranslated region.



The cellular uptake of foreign mRNA readily triggers

the immune system, which can be mitigated by the
introduction of modified nucleosides into the default mMRNA
structure (Figure 1).7%" The most prevalent modification
includes the replacement of uridine by pseudouridine or
N1-methyl-pseudouridine, as is present in the Comirnaty
and Spikevax vaccines. Furthermore, mRNA modifications
might unintentionally occur during synthesis and storage
resulting from oxidation or lipid adduct formation, thereby
rendering the mRNA untranslatable.”™' Noticeably,

Katalin Kariko and Drew Weissman were awarded the
Nobel prize in 2023 for their discovery of the increased
stability and decreased anti-RNA immune response of
pseudouridine-containing RNA.?

In MRNA-based drug development, it is of crucial
importance to meticulously study structural features

such as mRNA sequence, 3' poly A tail length and
distribution, 5' capping structure and capping efficiency,
posttranscriptional modifications, and sequence variants.®
Liquid chromatography (LC) with mass spectrometry (MS) is
gaining attention for assessing these attributes.®?¢ However,
successful LC/MS analysis requires RNase-mediated
digestion of the mRNA to oligonucleotides.? The
predominant LC method for oligonucleotide separation is ion
pairing-reversed phase LC (IP-RPLC) using either hexylamine
or triethylamine (TEA), and hexafluoroisopropanol (HFIP)

as ion-pair reagent (IPR) and counterion, respectively.?” This
IP-RPLC method yields a higher MS sensitivity compared to
hydrophilic interaction chromatography (HILIC), regarded

as the alternative and more sustainable option for LC/MS
analysis of oligonucleotides.?

To operate at high pressures, the typical LC hardware
(instrument, column, and tubing) consists of stainless-steel
(SS), which may pose significant challenges when
working with highly negatively charged oligonucleotides.
Indeed, the phosphate moieties of oligonucleotides
adsorb to the positively charged metal oxide surfaces

and interact with leached metal-ions retained by the
stationary phase, manifesting a low analyte recovery

and peak tailing.?® Leaching metals might be dealt with

by adding metal chelators to the mobile phase such as
ethylenediaminetetraacetic acid (EDTA) or medronic acid.
To avoid adsorption at the SS surface, passivation of the
SS surface is routinely performed, either by using mobile
phase additives such as citrate or phosphate, or by using
the oligonucleotides themselves, i.e., by conditioning the
column with repeated injections of the sample.?® Even
though passivation improves the peak shape and recovery

of oligonucleotides, it might neither fully cover all active

sites at the SS surface nor provide a sufficiently long-term
passivation. Furthermore, the use of mobile phase additives
might result in a lower MS response due to ion suppression.
A superior alternative is the implementation of low adsorption
and biocompatible LC flow paths from which SS is eliminated
(e.g. MP35N) or metal surfaces deactivated or covered with,
for example, polyether ether ketone (PEEK).

This application note describes the IP-RPLC-MS-based mRNA
mapping of RNase T1- and RNase 4-digested IVT-mRNA on

a low adsorption flow path using an Altura Oligo HPH-C18
column with Ultra Inert technology and biocompatible 1290
Infinity Il Bio LC System in combination with a 6530 Q-TOF
MS. The Altura column was compared with an AdvanceBio
Oligonucleotide column, a conventional stainless-steel

HPLC column packed with the same high-pH-tolerant C18
stationary phase.

Experimental

Materials

Water (HPLC-grade; shipped in polyethylene water bottles)
and methanol (ULC/MS - CC/SFC) were supplied by Biosolve.
TEA and HFIP were sourced from Sigma-Aldrich and Thermo
Fisher Scientific. RNase T1 and RNase 4 were purchased from
New England Biolabs. Tris(hydroxymethyl)aminomethane
(Tris) pH 7.5 buffer and ethylenediaminetetraacetic acid
(EDTA) were obtained from Sigma-Aldrich. RNA resolution
standard (part number 5190-9028) was received from Agilent
Technologies, and CleanCap Firefly Luciferase (FLuc) mMRNA
from TriLink BioTechnologies. The length of FLuc mRNA and
its ORF are 1,922 and 1,653 nucleotides (nt), respectively.

Sample preparation

The RNA resolution standard was dissolved in T mL of

water. Prior to RNA mapping, FLuc mRNA was enzymatically
digested by either RNase T1 or RNase 4. To create the RNase
T1 digestion mixture, 100 ug of FLuc mMRNA was digested
with 5,000 U of RNase T1 ina 100 mM Tris pH 7.5 buffer
with 40 mM EDTA for 30 minutes at 37 °C with shaking at
300 rpm. To prepare the RNase 4 digestion mixture, 100 ug
of FLuc mRNA was first denatured by mixing with 3 M urea,
followed by incubation at 90 °C for 10 minutes. After the
sample was cooled to room temperature, digestion proceeded
with 500 U RNase 4 in 1x NEBuffer r1.1 for 1 hour at 37 °C
with shaking at 300 rpm. Finally, both resultant digests were
concentrated up to 3 pg/plL using a refrigerated Centrivap
Concentrator (Labconco).



Instrumentation

Samples were run on a 1290 Infinity Il Bio LC System
consisting of an Agilent 1290 Infinity Il Bio High-Speed
Pump (G7132A), an Agilent 1290 Infinity Il Bio Multisampler
(G7137A) with integrated sample thermostat, an

Agilent 1290 Infinity Il Multicolumn Thermostat (G7116B)
with Agilent InfinityLab Quick Connect Bio heat exchanger,
standard flow (G7116-60071), and an Agilent 1290 Infinity I
DAD (G7117B) with Agilent InfinityLab Max-Light Cartridge
Cell, LSS, 10 mm (G7117-60020). LC/MS was performed by
hyphenating the 1290 Infinity Il Bio LC to a 6530 LC/Q-TOF
(G6530A). Method parameters are summarized in Tables 1
and 2.

Table 1. LC method parameters.

Parameter Value

Agilent AdvanceBio Oligonucleotide, 2.1 x 150 mm,
2.7 pm (p/n 653750-702)

Agilent Altura Oligo HPH-C18 with Ultra Inert
technology, 2.1 x 150 mm, 2.7 ym (p/n 227215-702)

Columns

Flow Rate (Method 1) 0.35 mL/min

Flow Rate (Methods 2 and 3)| 0.2 mL/min

A) 200 mM HFIP, 15 mM TEA in water

Mobile Phase (Method 1) B) Methanol

Mobile Phase
(Methods 2 and 3)

A) 1% HFIP, 0.1% TEA in water
B) 1% HFIP, 0.1% TEA in water/methanol (50/50, v/v)

Time (min)  %B

Gradient (Method 1) ?5 25
18 100

Time (min)  %B
1

Gradient (Method 2) 30 ;1
60 50
65 100

Time (min)  %B
1

Gradient (Method 3) 5 1

120 50

125 100
Injection (Method 1) 1L
Injection (Methods 2and 3) | 2pL
Needle Wash Flush port, 100% methanol
Autosampler Temperature 8°C
Column Temperature 65°C

Detection DAD 260/4 nm, reference 360/40 nm

Table 2. MS method parameters for LC/MS analysis using LC methods 2
and 3.

Parameter Value
lonization Negative ESI
Source*
Drying Gas Temperature 300 °C
Drying Gas Flow 8 L/min
Sheath Gas Temperature 350°C
Sheath Gas Flow 8 L/min
Nebulizer Pressure 35 psi
Capillary Voltage 4,500 V
Nozzle Voltage 1,000 V
Fragmentor 250V
Skimmer 65V

Acquisition — MS

Acquisition Mode Extended dynamic range (2 GHz)

Mass Range m/z 500 to 3,200

Scan Rate 3 spectra/sec

Data Storage Both profile and centroid

Reference Mass Disabled
Acquisition — MS/MS
Acquisition Mode Auto MS/MS
Mass Range m/z 100 to 3,200
Scan Rate 1 spectrum/sec
Isolation Width (MS/MS) Medium (~ 4 amu)

Collision Energy 40 (Fixed)

Auto MS/MS Preferred Table Included (delta retention time: 4 min)

Max Precursors per Cycle 4

Active Exclusion Enabled Yes
Active Exclusion Excluded After 2 Spectra
Active Exclusion Released After 0.30 min

* Diverter valve was bypassed to prevent potential nonspecific interactions with
stainless-steel components of the valve hardware.



Data analysis

Data were acquired and processed in Agilent OpenLab CDS
software (version 2.7), Agilent MassHunter Data Acquisition
software (version B.10.00), and Agilent MassHunter
Qualitative Analysis software (version B.12.00). Later software
versions can be used as well. MassHunter Qualitative
Analysis facilitated maximum entropy deconvolution and
enabled extracting the smaller and larger sized molecular
features by combining information from the MS spectral
ions representing different charge states and isotopes of the
same oligonucleotide. Further data processing steps were
performed in R version 4.2.1 (R Core Team, 2022) including
(1) matching the average or monoisotopic molecular

weight (MW) of each feature with the corresponding mRNA
subsequence(s), taking the cleavage site of the RNase

into account, and (2) using the recorded MS/MS spectrum

of a feature to annotate the correct subsequence in case
multiple isomeric candidate subsequences match the MW of
the feature.
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Results and discussion

As shown in a previous application note describing the
HILIC-MS analysis of 5-terminal mRNA fragments?4,
oligonucleotides are readily adsorbed onto the SS surfaces
of the LC column, and to a lesser degree, the LC instrument,
leading to lower recovery and tailed peak shapes. To evaluate
the extent that IP-RPLC-MS analysis of oligonucleotides

is similarly affected by metal adsorption, the Agilent RNA
resolution standard (consisting of four oligonucleotides:
14-,17-, 20-, and 21-mer), was repeatedly injected onto an
SS-based RPLC column mounted into an 1290 Infinity Il

Bio LC System using TEA and HFIP as IPR and counterion,
respectively. As shown in Figure 2A, the UV absorption
response of the four RNA standards gradually increased,
plateauing from the eighth injection onwards, suggesting
that metal adsorption occurs in IP-RPLC. The hyperbolically
changing RNA standard abundances across the subsequent
injections arise because the metal surface becomes
increasingly passivated with each injection, leading to less
RNA adsorption onto the metal surface and, eventually, to a
steady state detector response after eight injections of the
RNA standard, corresponding to 0.08 pmol of RNA injected.
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Figure 2. IP-RPLC-UV chromatograms of repeated RNA resolution standard injections using the SS Agilent AdvanceBio Oligonucleotide (A) and the inert

Agilent Altura Oligo HPH-C18 (B) column (LC method 1: see Table 1).



The peak abundance of the 21-mer is approximately double
those of the three other RNA standards throughout the
injections, which is in agreement with the specifications of
the RNA standard that states that the amount of the 21-mer
is twice the amount of the 14-, 17-, or 20-mer. In contrast with
HILIC analysis?, hardly any peak tailing was observed for
the oligonucleotides during IP-RPLC analysis, which is due
to the partial neutralization of the RNA molecules through
phosphodiester-TEA ion-pair formation. Further support for
metal adsorption of oligonucleotides in a conventional SS
column during IP-RPLC analysis was obtained by analyzing
the RNA standard using an Altura RPLC column with Ultra
Inert technology (same C18 media). Here, consecutive
injections of the standard yielded a stable UV absorption
response from the first injection onwards (Figure 2B).

By comparing the detector response upon injection of

the standard in an LC flow path that either does or does

not comprise an LC column, the oligonucleotide amount
recovered from the column or the amount that remained

on the column can be estimated. When using the Ultra

Inert and conventional SS HPLC columns, 4.2 and 6.2% of
the total amount of oligonucleotides did not elute from the

column at steady state conditions. The difference between
both columns (2.0%) represents the retained proportion of
oligonucleotides due to metal adsorption.

The symmetrical peak shapes, good oligonucleotide recovery,
and precision achieved across multiple injections support
the use of the Altura column for IP-RPLC-MS analyses of
complex oligonucleotide mixtures. This study used such a
mixture by digesting Fluc mRNA using either RNase T1 or
RNase 4. Whereas the former cleaves 3' of G units, the latter
recognizes UG and UA dimeric sites and hydrolyzes the
intermediate phosphodiester linkage. Both digestions yield

a 5-terminal fragment containing a 3-terminal phosphate

or a cyclic 2',3-phosphodiester. When profiling both digests
with IP-RPLC, the RNase T1 digest mainly shows peaks in
the first half of the chromatogram, whereas the RNase 4
digest displays a rich peak profile in the second half of

the chromatogram (Figure 3). This indicates that shorter
subsequences are generated by RNase T1 than by RNase 4.
As depicted in Figure 3, an in silico digestion of Fluc mRNA
with RNase T1 generates mostly subsequences with a length
of 2 to 5 nt, whereas an RNase 4-mediated in silico digestion
of Fluc mRNA yields readily longer subsequences.
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Figure 3. IP-RPLC-UV chromatograms of RNase T1- and RNase 4-digested Fluc mRNA (LC method 2). The in silico-generated subsequence length distributions in

RNase T1 and RNase 4 digestions are shown to the right of the chromatograms.



To retrieve more information on the identities of the various
peaks resulting from RNase T1 and RNase 4 digestion and
to perform an in-depth mRNA characterization, LC/MS
analysis was performed. In the LC/MS chromatogram of the
RNase T1 digest (Figure 4), the retention time range from 5
to 40 minutes displays a dense peak region, whereas two
wider and more abundant peaks appear between 50 and

55 minutes and a narrow peak at approximately 65 minutes.
These latter three peaks were highly charged, suggesting
high MWs. Following maximum entropy deconvolution using
MS profile data, these peaks could be associated with the
poly A tail, large mRNA hydrolysates, and the RNase T1
enzyme, respectively.

The deconvoluted MS spectrum of the poly A tail showed
a symmetric (supported by a polydispersity close to 1)
distribution of poly A tail lengths varying between 118 and
133 A units and with a distribution mode, i.e., the most

abundantly present poly A tail length, at 124 A units, in
agreement with the results mentioned in Morreel et al.®
Note the clean deconvoluted spectrum devoid of aberrant
adduct formation, which can be attributed to the materials
used in the mobile phase/sample flow path (plastic

bottles, biocompatible LC material, and Ultra Inert column
technology). Additionally, the 5'-terminal cap structure could
be traced at approximately 20 minutes in the 5 to 40-minute
crowded region by searching for two pseudomolecular ions
having the same retention time but differing by 165 amu.
The latter mass difference corresponds to an in-source loss
of the 7-methylguanine nucleobase. In agreement with Gau
et al.??, RNase T1 digestion followed by IP-RPLC-MS analysis
allowed simultaneous profiling of the 5'-terminal structure,
the 3'-poly A tail, and the various subsequences necessary for
RNA mapping.
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Figure 4. mRNA mapping combined with 5'-cap and 3'-poly A tail analyses of the RNase T1 digest of Fluc mRNA. The displayed cap-containing trimer consists
of a 7-methylguanosine (m7G) coupled by a triphosphate bridge to a 2'-0O-methyladenosine (2'-OMeA), which is itself linked to a guanosine (G) unit. When the cap
structure m7G 2'-OMeA G enters the MS ionization source, a neutral loss of 165 Da corresponding to 7-methylguanine is observed. The mRNA pool displays a
variety of poly A tail lengths of which the distribution symmetry around the average length is judged by the polydispersity (LC method 2).



A concurrent analysis procedure of mRNA terminal GNNNNU(Nand m7G 2-0-MeA represent nondisclosed

annotation and mRNA mapping was also obtained upon nucleobases and the cap structure, respectively; see the
IP-RPLC-MS analysis of an RNase 4 digest (Figure 5). Here, legend of Figure 4 for additional explanations), for which
the poly A tail length distribution was similar to that obtained the noncapped counterpart, AG N N N N U, could be traced
through RNase T1 digestion. However, opposite of the as well (Figure 6). Based on the relative peak areas of the
RNase T1 digest, the capped 5-terminus was represented capped and noncapped species, a 99.2% capping efficiency
by a longer and unique octameric sequence, m7G 2'-O-MeA was calculated.
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Figure 5. MRNA mapping combined with 5'-cap and 3'-poly A tail analyses of the RNase 4 digest of Fluc mRNA (LC method 2). The cap-containing oligonucleotide
is much longer (8 units) than observed for the RNase T1 digest. See Figure 4 for further information.
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Figure 6. 5'-Terminal mRNA sequence analysis and capping efficiency computation (LC method 3) of the FLuc mRNA digest obtained with RNase 4.

(A) Extracted ion chromatograms (EICs) at m/z 1,155.1617 (blue) and 1,421.6705 (black), corresponding to the noncapped (A G N N N N U) and capped

5-termini (M7G 2'-OMeA G N N N N U; see Figure 5) having a 2',3"-cyclic-phosphodiester (CYC) 3'-terminus. The abundant peak labeled m/z 1,155.1617 could be
distinguished from the isomeric CYC-terminated noncapped species by MS/MS spectral interpretation. The blue chromatogram in the inset represents a zoom
of the m/z 1,155.1617-based EIC. (B) m/z Isotope envelope of the doubly charged CYC-terminated capped and noncapped species. (C) MS/MS spectrum of the
CYC-terminated capped species with indication of the cleavage positions. See Figure 7 for the cleavage positions leading to the w- and y-type ions. Annotation
labels based on the structure of the product ion or on that of the corresponding neutral loss are indicated in blue or red, respectively. *Contaminating peak
represents a '*C isotope of an internal mRNA subsequence. Note that an extended LC gradient (method 3) was used to better resolve the latter contaminant from

the noncapped 5'-terminus, facilitating accurate capping efficiency determination.



For further sequence confirmation, the IP-RPLC-MS data
were subjected to small and large-sized molecular feature
extraction returning monoisotopic or average MW values
associated with all peaks. These MWs were then searched
among the many theoretical MWs derived from an in silico
digestion of the mRNA, enabling subsequence annotation of
the recorded MWs. Occasionally, the same MW is obtained
for multiple LC/MS peaks. As such peaks represent different
isomeric subsequences, MS/MS fragmentation is necessary

to distinguish between all possible isomers. Collision-induced
dissociation of an RNA oligomer occurs typically through
phosphodiester cleavage, yielding 5'-terminal a and ¢ ions and
3-terminal w and y ions®, which can be used to distinguish
the different isomers (Figure 7). This procedure of using

full MS supported by MS/MS to annotate the LC/MS peaks
yielded the RNase T1 fragment annotations shown for the

more abundant peaks in Figure 8.

x1083 G-3' (y ion)
. 362.05
. 5-ACCAUCG-3
c
8 o —
40 G3'(wion) > g 5
442.02 w3 )
5 0 = o
3.5 o °C % 5 o
) 2 667.09° £ < = . d
S © & i 5 cion N,
Q 747.07 ©
- 3,  938.12 e
’ < (&)
0 o
858. <
2.5 2 107104 20
o O D% 1267.16
2 Al
US’_ 0 Ik .1M i \]\ L dﬂ Ll Ldl. bt L it
2 2.0 200 400 600 800 1,000 1,200 1,400
Mass-to-charge (m/z)
x10* G-3' (y ion)
1.5 6 362.05 UG-3'(y ion)
668.07 5-CAACCUG-3
5
1.0 U G-3' (w ion)
4 748.04
2
0.5 c
3 , .
3 G-3' (w ion) 5-ACC (cion)
442.02 962.14
01 2 1,071.66
22 24 26 28 5-CAAC (aion)
Acquisition time (min) 1 ’ J 1,187.21
0 |LLIMH|. \‘“.JL-LMJU- ILL UL | ulhl..“.uud.
200 400 600 800 1,000 1,200 1,400

Mass-to-charge (m/z)

Figure 7. IP-RPLC-MS peaks (EIC) representing two isomeric subsequences derived from the RNase T1 digest of Fluc mRNA (LC method 2). The more abundant
MS/MS product ions represent the a-, c-, y-, and w-type phosphodiester cleavages yielding 5'- and 3'-terminal, as well as internal fragments.
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Figure 8. MRNA mapping of Fluc mRNA RNase T1 digest with indication of subsequence annotation based on MS/MS spectral elucidation (LC method 3). Colored

bars above the annotations and below the chromatogram peaks improve the visual tracking of the subsequence annotation for each peak. Each subsequence is

preceded by its MW as recorded through MS. Red annotations correspond to unidentified peaks.

83 and 76 subsequences bearing a 3'-phosphate and a

Peaks where the annotated subsequence occurs multiple

2'-3-cyclic-phosphodiester at the 3-terminus, respectively.

times along the mRNA sequence (multisite subsequences)
prevent a one-to-one correspondence of the peak with a

These single-site subsequences covered 88.6% of the Fluc

MRNA ORF (Figure 9), a value surpassing the previously

particular site on the mRNA sequence and were discarded
from further analysis. By way of example, the trimer ACG

published 78%.% Clearly, the use of RNase 4 allowed a much

higher sequence coverage than RNase T1 digestion due to the

longer subsequences obtained by the enzyme.

occurs 13 times in the ORF of Fluc mRNA, thereby covering

>2% of the sequence. For RNase T1 digestion of Fluc

specific peaks could be split into

MRNA, the remaining site

specific subsequences

When combining the identified site

terminal

phosphate group (60 peaks) and those characterized by a

those representing a subsequence containing a 3

resulting from both the RNase T1 and RNase 4 digestions

(Figure 9), 94.7% of the Fluc mRNA ORF is covered, which is
similar to the value reported by Vanhinsbergh et al.2° where

partial RNase T1 digestion was performed. Furthermore,

3-terminal 2',3'-cyclic phosphodiester moiety (52 peaks).
Among this total of 112 subsequences, those located in the

ORF covered 49.4% of the latter mRNA region (Figure 9).

the resulting 94.7% coverage is close to the 96.9% coverage
obtained when including subsequences that occur multiple

This value approaches the upper border of the 12% to 56%

range based on published sequence coverages of Fluc mRNA
computed using site-specific subsequences derived from

LC/MS analyses of complete RNase T1 digests.?!222526

times along the mRNA sequence (Table 3). This observation
results from the long and unique subsequences generated

by RNase 4 digestion, eliminating the often occurring need to
consider multisite subsequences to further improve mRNA

sequence coverage.

By performing the same RNA mapping procedure on the
RNase 4 digest, 159 site-specific subsequences were

annotated on the full MRNA sequence, which represented

11



RNA mapping of RNase T1 digest (sequence coverage: 49.4%)
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CCCC CCGGCUUCAA
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RNA mapping of RNase 4 digest (sequence coverage: 88.6%)
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RNA mapping of RNase T1 + RNase 4 digests (sequence coverage: 94.7%)
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Figure 9. Fluc mRNA ORF sequence coverage. Multisite subsequences are excluded. See text for further explanation.
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Table 3. Fluc mMRNA ORF sequence coverage.

RNase T1 RNase4 | RNaseT1+4
Only Site-Specific Subsequences 49.4% 88.6% 94.7%
All Subsequences (Length > 3) 75.7% 88.9% 96.9%

Conclusion

This application note investigates mMRNA mapping using
IP-RPLC-MS on a low adsorption flow path, composed of

an Agilent Altura HPLC column with Ultra Inert technology
and Agilent 1290 Infinity Il Bio LC System. When applied on
a complex oligonucleotide mixture resulting from the RNase
T1 and RNase 4 digestion of Fluc mRNA, a low-adsorption
flow path, enabled (1) reaching high sequence coverage, (2)
displaying the poly A tail length distribution, (3) verifying the
5-terminal cap structure, and (4) calculating the capping
efficiency. Strikingly, by combining the results from parallel
digestions with a low-frequent (RNase 4) and a high-frequent
(RNase T1) cutter, 94.7% of the mRNA sequence could

be covered.
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