

An Application Kit for the Screening of Samples for Analytes of Forensic and Toxicological Interest using TOF or Q-TOF LC/MS with a Personal Forensic Toxicology Database

Application Note

Forensic Toxicology

## Abstract

A Forensic and Toxicological screening application kit has been developed for use with the Agilent TOF and Q-TOF Mass Spectrometers which contains an accurate mass database with a content of around 6700 analytes. The aim of the MassHunter Personal Forensic Toxicology Database Kit is to provide a user with a sufficient starting point for the analysis of samples for which the ability to detect and identify from a large array of forensic and toxicological analytes is necessary. The combined system allows the user to create custom databases containing retention times of compounds of interest for smaller and more specific suites of analytes according to specific requirements. A test mix containing analytes of forensic interest, to demonstrate the functionality of the MassHunter Personal Forensic Toxicology Database Kit, together with an example of a general screening method for common drugs of abuse is provided.

# • • •

## **Agilent Technologies**

## Authors

Peter Stone and Jerry Zweigenbaum Agilent Technologies, Inc. 5301 Stevens Creek Blvd. Santa Clara, CA 95051 USA

## Introduction

The application of high definition accurate mass spectrometers, such as time-of-flight (TOF) and quadrupole time-of-flight (Q-TOF), to screening, discovery and confirmation in the areas of forensics and toxicology has become more desirable given the indiscriminant and non-targeted nature of their full spectral data capture. Indeed, given the highly accurate and sensitive mass measurement of modern TOF and Q-TOF instruments (sub 2-ppm mass accuracy, pg on-column sensitivity and high resolution) in combination with powerful software data mining tools, post acquisition screening techniques are easier to perform reliably with a higher number of analytes in one analytical method. The lists of potential toxins are large and typically depend on the area of analytical focus such as work-place drug testing, doping control, post-mortem toxicology, or explosives.

Accurate single-stage mass spectrometry (MS) mass measurements identify monoisotopic adducts to a high confirmatory degree, and databases can be built to accommodate various suites of forensic and toxicological analytes of interest. They are obtained from both TOF and Q-TOF LC/MS instruments. In contrast LC/MS/MS with a triple quadrupole MS in its most sensitive mode, multi-reaction monitoring (MRM), provides targeted screening and confirmation only [1].

This application note describes the Agilent MassHunter Personal Forensic Toxicology Database Kit for Forensic and Toxicological Screening and Identification which contains the accurate mass (AM) details for around 6700 analytes of forensic and toxicological interest. The content was gathered upon advice from many leading institutions and knowledge bases world-wide and contains information such as common names, monoisotopic mass, compound formulas, CAS & Chemspider IDs, chemical structure and in most cases the IUPAC nomenclature. In addition to accurate mass, the ability to add retention time for a chromatographic method to every analyte for extra search confirmation is a built-in functionality of the MassHunter Personal Compound and Library (PCDL) program interfaces. This allows accurate mass retention time (AMRT) data mining routines. Furthermore, an analyst can use the database content 'as is' for non-targeted screening or create smaller custom and more targeted databases from the readonly supplied database. Custom databases can be edited by changing entries, adding, and deleting entries and semi-automatically updating retention times for particular analytes and methods. [2] The analyst can create as many custom databases with LC-dependent retention times as needed.

This application note describes the typical use of the MassHunter Personal Forensic Toxicology Database Kit through a few analytical screening work flow examples.

## **Experimental**

The analysis results outlined in this application note were obtained using an Agilent 6230 Time-of-Flight LC/MS coupled to an Agilent 1200 SL Series LC system. The LC system consisted of a binary pump (G1312B), vacuum degasser (G1379B), automatic liquid sampler (G1367D), thermostatted column compartment (G1316B) and MassHunter Workstation equipped with the (G6855AA) MassHunter Personal Forensic Toxicology Database Kit.

### **Sample preparation**

An ampoule from the LC/MS Toxicology Test Mix (p/n 5190-0470) which is included in the MassHunter Personal Forensic Toxicology Database Kit [G6855AA] was opened and 10  $\mu$ L of the 1  $\mu$ g/mL (1 ppm) solution was diluted to a concentration of 100 ng/mL (100 ppb) using 990  $\mu$ L of pure LC/MS grade methanol to create a clean solvent standard for method checkout purposes.

Table 1 outlines the composition of the LC/MS Toxicology Test Mix (p/n 5190-0470) which is intended to cover a wide and representative range of forensic analyte classes.

 Table 1.
 LC/MS Toxicology Test Mix Components (1 µg/mL)

| Compound name                           | Formula                                                       | Mass      |
|-----------------------------------------|---------------------------------------------------------------|-----------|
| 3,4-Methylendioxyamphetamine (MDA)      | C <sub>10</sub> H <sub>13</sub> NO <sub>2</sub>               | 179.09463 |
| 3,4-Methylenedioxyethamphetamine (MDEA) | C <sub>12</sub> H <sub>17</sub> NO <sub>2</sub>               | 207.12593 |
| Alprazolam                              | $C_{17}H_{13}CIN_4$                                           | 308.08287 |
| Clonazepam                              | $C_{15}H_{10}CIN_{3}O_{3}$                                    | 315.04107 |
| Cocaine                                 | C <sub>17</sub> H <sub>21</sub> NO <sub>4</sub>               | 303.14706 |
| Codeine                                 | C <sub>18</sub> H <sub>21</sub> NO <sub>3</sub>               | 299.15214 |
| delta9-Tetrahydrocannabinol (THC)       | C <sub>21</sub> H <sub>30</sub> O <sub>2</sub>                | 314.22458 |
| Diazepam                                | C <sub>16</sub> H <sub>13</sub> CIN <sub>2</sub> O            | 284.07164 |
| Heroin                                  | C <sub>21</sub> H <sub>23</sub> NO <sub>5</sub>               | 369.15762 |
| Hydrocodone                             | C <sub>18</sub> H <sub>21</sub> NO <sub>3</sub>               | 299.15214 |
| Lorazepam                               | $C_{15}H_{10}CI_2N_2O_2$                                      | 320.01193 |
| Meperidine (Pethidine)                  | C <sub>15</sub> H <sub>21</sub> NO <sub>2</sub>               | 247.15723 |
| Methadone                               | C <sub>21</sub> H <sub>27</sub> NO                            | 309.20926 |
| Methamphetamine                         | C <sub>10</sub> H <sub>15</sub> N                             | 149.12045 |
| Methylendioxymethamphetamine (MDMA)     | C <sub>11</sub> H <sub>15</sub> NO <sub>2</sub>               | 193.11028 |
| Nitrazepam                              | C <sub>15</sub> H <sub>11</sub> N <sub>3</sub> O <sub>3</sub> | 281.08004 |
| Oxazepam                                | $C_{15}H_{11}CIN_2O_2$                                        | 286.05091 |
| Oxycodone                               | C <sub>18</sub> H <sub>21</sub> NO <sub>4</sub>               | 315.14706 |
| Phencyclidine (PCP)                     | C <sub>17</sub> H <sub>25</sub> N                             | 243.1987  |
| Phentermine                             | C <sub>10</sub> H <sub>15</sub> N                             | 149.12045 |
| Proadifen                               | C <sub>23</sub> H <sub>31</sub> NO <sub>2</sub>               | 353.23548 |
| Strychnine                              | $C_{21}H_{22}N_2O_2$                                          | 334.16813 |
| Temazepam                               | $C_{16}H_{13}CIN_2O_2$                                        | 300.06656 |
| Trazodone                               | C <sub>19</sub> H <sub>22</sub> CIN <sub>5</sub> O            | 371.15129 |
| Verapamil                               | $C_{27}H_{38}N_2O_4$                                          | 454.28316 |

#### **Reagents and chemicals**

Burdick & Jackson LC/MS grade acetonitrile together with de-ionized water (locally produced 18.1 M $\Omega$ ) were used for mobile phases. Buffers were freshly prepared using a high purity source of formic acid and ammonium formate.

## Instrument settings and MS acquisition method parameters

#### **LC** conditions

| Column             | Agilent ZORBAX Eclipse Plus C18,<br>2.1 mm × 100 mm, 1.8 μm (p/n 959764-902) |                                                                                                    |         |                      |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------|----------------------|--|--|--|--|--|
| Column temperature | 60 °C                                                                        |                                                                                                    |         |                      |  |  |  |  |  |
| Mobile phase       | A) 5 mM NH<br>B) 0.01% for                                                   | A) 5 mM NH <sub>4</sub> formate/0.01% formic acid in water<br>B) 0.01% formic acid in acetonitrile |         |                      |  |  |  |  |  |
| Flow rate          | 0.5 mL/min                                                                   |                                                                                                    |         |                      |  |  |  |  |  |
| Gradient program   | Time (min)                                                                   | %A                                                                                                 | %B      | Flow rate (mL/min)   |  |  |  |  |  |
|                    | 0                                                                            | 90                                                                                                 | 10      | 0.5                  |  |  |  |  |  |
|                    | 0.5                                                                          | 85                                                                                                 | 15      | 0.5                  |  |  |  |  |  |
|                    | 3.0                                                                          | 50                                                                                                 | 50      | 0.5                  |  |  |  |  |  |
|                    | 4.0                                                                          | 5                                                                                                  | 95      | 0.5                  |  |  |  |  |  |
|                    | 6.0                                                                          | 5                                                                                                  | 95      | 0.5                  |  |  |  |  |  |
| Injection volume   | 1 µL (with 5                                                                 | secon                                                                                              | d needl | e wash in flushport) |  |  |  |  |  |
| Analysis time      | 6.0 minutes                                                                  |                                                                                                    |         |                      |  |  |  |  |  |
| Post Time          | 2.0 minutes                                                                  |                                                                                                    |         |                      |  |  |  |  |  |
| Overall cycle time | 8.0 minutes                                                                  |                                                                                                    |         |                      |  |  |  |  |  |
|                    |                                                                              |                                                                                                    |         |                      |  |  |  |  |  |

### Agilent 6230 TOF MS conditions

#### Source conditions

Fragmentor voltage

#### Electrospray AP-ESI (using Agilent Jet Stream Technology)

| Positive ionization polarity    |                  |
|---------------------------------|------------------|
| Sheath gas temperature and flow | 380 °C, 12 L/min |
| Nozzle voltage                  | 500 V            |
| Drying gas temperature and flow | 320 °C, 8 L/min  |
| Nebulizer gas pressure          | 27 psi           |
| Capillary voltage               | 3,750 V          |
| Fragmentor voltage              | 150 V            |
| Electrospray AP-ESI             |                  |
| Positive ionization polarity    |                  |
| Drying gas temperature and flow | 350 °C, 12 L/min |
| Nebulizer gas pressure          | 30 psi           |
| Capillary voltage               | 2,000 V          |

150 V

#### MS acquisition method parameters

| Reference ion mass enabled | 121.050873, 922.009798 |
|----------------------------|------------------------|
| Acquisition mode           | MS1                    |
| Minimum mass value         | 50 <i>m/z</i>          |
| Maximum mass value         | 1,050 <i>m/z</i>       |
| Scan rate                  | 3 Hz                   |

All other instrument operating parameters were taken care of by Agilent's autotune functionality and subsequent mass calibration using standard settings.

## **Results and Discussion**

## Fast and easy start up with Agilent LC/MS Toxicology Test Mix

The LC/MS Toxicology Test Mix (p/n 5190-0470) is included in the MassHunter Personal Forensic Toxicology Database Kit (G6855AA) to rapidly implement the method and verify that acquisition and data analysis methodology is correctly set up. The LC/MS Toxicology Test Mix contains a representative range of components from 25 forensic analyte classes. (see Table 1). MS screening depends on accurate mass results from the TOF or Q-TOF. Therefore, the use of appropriate reference ions as outlined in the Experimental conditions section obtains the most accurate results.



Figure 1. Extracted compound chromatogram of LC/MS Toxicology Test Mix.

In compliance with the methodology outlined in the experimental section, a 1- $\mu$ L injection of the 100 ng/mL LC/MS Toxicology Test Mix equates to a 100 pg on-column injection amount. Figure 1 shows an overlay of the expected extracted compound chromatograms for the LC/MS Toxicology Test Mix. A standard method is included for TOF and Q-TOF as part of the MassHunter Personal Forensic Toxicology Database Kit. These can be loaded so that all conditions are correct and the user can reproduce the analysis.

These methods are acquisition only methods and correspond to the instrument configuration as outlined in the experimental section of this application note. Appropriate settings must be manually input if a different instrument configuration is used. Similar results will demonstrate that the system is working properly.

## Personal Compound Database and Library (PCDL) Software interface

#### Outline

An open database dialog box appears after invoking the PCDL interface from the desktop icon. It is best to choose the preinstalled Forensic.cdb from the MassHunter\database directory. Figure 2 illustrates the single search view of the software interface. The screen shows a list of search results for amphetamine. There are seven views available to the user, however, for the scope of this application note, only the first four (tabs to the left) that are directly applicable to AMRT functionality will be described. These views are switched on this flat user interface by clicking the appropriate tab: *Single Search, Batch Search, Batch Summary, or Edit Compounds*.



Figure 2 Single Manual Search view of the PCDL software interface.

Any field or combination of fields in the upper portion of the Single Search tab (Figure 2.) can be used to manually search the loaded database. Table 2 lists all available search fields from the PCDL single search view. The powerful search algorithm also handles partial names (for example, 'amph' will return all database entries containing this letter string.)

**Note**: To view the entire contents of the loaded database, a single search invoked with all empty search fields will allow the user to display the entire database content.

Table 2. All Available Search Fields for PCDL Single Search

#### Search fields available

| (Single Search view) | Value                                      |
|----------------------|--------------------------------------------|
| Mass                 | Measured mass $(m/z)$                      |
| Retention time       | (minutes)                                  |
| Formula              | Empirical Formula                          |
| Name                 | Common name of compound (or part thereof)  |
| Notes                | Compound class or description              |
| IUPAC                | IUPAC or commonly recognized compound name |
| CAS                  | Unique CAS number                          |
| ChemSpider           | Unique ChemSpider ID                       |

#### Workflow A. Manual (Single Mass Search)

#### **Using PCDL Program**

Single search would normally be used manually by obtaining a measured mass from a measured or observed spectrum in MassHunter Qualitative Analysis program and typing it in to the mass search field. Figure 3 illustrates this manual application of the MassHunter Qualitative Analysis program and PCDL single search capability for observed masses.

In this example, a compound peak was identified in MassHunter Qualitative Analysis program from positive polarity TOF data, the spectrum was extracted, and the observed mass of 244.205770 m/z was searched against the PCDL database (including cations) for [M+H]<sup>+</sup> adducts using a mass tolerance of 10 ppm.

The search returns an accurate mass match with phencyclidine (PCP) and with a mass deviation (or delta mass) of 0.85 ppm between the measured and theoretical database values.

More detailed information of single search capability can be found in Agilent G6855AA MassHunter Personal Forensic Toxicology Database and Kit Quick Start Guides [3,4].



Figure 3. Manual search of observed mass.



Figure 4A. Manual Search of observed mass using Agilent MassHunter Qualitative Analysis program.

## Single manual search of database using Agilent MassHunter Qualitative Analysis program

To obtain a seamless single spectral peak database search via MassHunter Qualitative Analysis program, the database must be specified in the qualitative analysis method editor. Compatible software versions are B.03.01 or higher. Figures 4A through 4D illustrate the settings used for this example.

Figure 4a shows the typical MassHunter Qualitative Analysis program view containing the chromatographic peak in question together with its manually extracted spectrum. On the left side of the screenshot, the *Identify Compounds* method explorer options have been expanded and the *Search Database* method editor was selected. In the method editor, the required AMRT database was specified as forensic.cdb.

Figure 4B shows the mass tolerance window and the search criteria that can be selected, such as mass only or mass with retention time.



Figure 4B. Manual search criteria settings.

Figure 4C illustrates more adduct and charge state options required for the database search.

Right-click in the spectrum window and a shortcut menu appears against the specified AMRT database (Figure 4A.) This menu has various options including *Search database for spectrum peaks*. Selection of this option automatically invokes the database search. In Figure 4D the spectrum peak has been identified as PCP, with 0.87 ppm mass deviation and a spectral combined score of 99.36 out of 100, indicating extra confirmation of identity.

To calculate this score, three distinct score components were considered: Mass Match, Abundance Match, and Spacing Match with values of 99.61, 98.61, and 99.79, respectively. These are individually displayed in Figure 4D.

For trustworthy results, the software scores the database matches based on the similarity of each of the isotopic masses (Mass Match), isotope ratios (Abund Match), isotope spacing (Spacing Match), and optionally the retention time (RT Match).

| 📑 Method Editor: Search Da                | atabase                     | ×                                             |
|-------------------------------------------|-----------------------------|-----------------------------------------------|
| 🚮   🖛 🕶 🚽 💽 📲 Me                          | ethod Items 🕶 🛛 🖉           | - 1                                           |
| Search Criteria     A Positive Ions     N | A Database<br>legative lons | Peak Limits<br>Search Results                 |
| Charge carriers                           | A Neutr                     | egates<br>e.g., [2M+H]+<br>imers e.g. [2M+H]+ |
| <                                         |                             | >                                             |

Figure 4C. Manual Search Adduct selection.



Figure 4D. Manual database search results using Agilent MassHunter Qualitative Analysis program.

Isotope spacing is another important component of the scoring algorithm. The mass spacing from the M to the M+1 and M+2 isotopes can be measured with low-ppm accuracy. Any small mass shifts affect all isotopes equally, so this measurement is independent of overall mass axis shifts. This is outlined graphically in Figure 4D.

In this example, a single AMRT database result of phencyclidine (PCP) was returned, together with its structure which is optionally overlaid on the peak spectrum as shown in Figure 4D and can be displayed if selected in the reporting options.

More detailed information about MassHunter Qualitative analysis program database searching can be found in the MassHunter Qualitative Analysis Program Help Files or user guides [5].

## Workflow B. Data mining using Molecular Feature Extractor (MFE)

Batch PCDL searches (tabs 2 and 3) are designed for database searching and identification using an accurate mass list created from an automated data mining algorithm such as the Agilent Molecular feature extractor (MFE.) Such algorithms are extremely powerful, especially with complex data derived from difficult sample matrices, such as blood extracts. For the remainder of this application note, only batch searches invoked from inside the MassHunter Qualitative Analysis program interface will be outlined and described. For information on how to perform batch searches within the PCDL interface, please refer to the PCD application note [2].

Data mining algorithms such as MFE automatically search and mine complex sets of single-stage MS data to determine and distinguish most likely and real compound peaks from continuous background interferences. Combinations of adducts can be selected as part of the compound identification protocol to provide added assurance of compound validity.

Other data mining algorithms such as *find by MS/MS* and *find by Targeted MS/MS* are integral options included as part of the MassHunter Qualitative Analysis program software. The algorithms are dependent on the mode of operation and nature of the instrument being used. *Find by Formula* compound search routines are described in the Workflow C section of this application note.

For illustrative purposes, the LC/MS Toxicology Test Mix was analyzed under the conditions outlined in the experimental section. The data file was loaded into MassHunter Qualitative Analysis program. The *Find by Molecular Feature* method





Figure 5B. MFE ion species setup.

editor was opened under the method explorer in the *Find Compounds* section (Figures 5A and B).

A very aggressive setting of absolute peak height threshold (>500 counts) was used in this example (Figure 5A), together with the small molecules algorithm (chromatographic) which yielded over 3,000 possible compound hits. By raising this threshold amount, less abundant analytes may remain undetected. Conversely with a higher threshold the number of potential false positives are greatly reduced. Only [M+H]<sup>+</sup>

| ∃ Spectrum                                                                                                                                                                                                                                           | 🖉 Method Editor: Search Database 🛛 🗙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🖃 General                                                                                                                                                                                                                                            | 🗄 🖄 🔊 🕶 🖓 🕒 Method Items 🔹 🔁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Analysis Report                                                                                                                                                                                                                                      | Negative Ions Scoring Search Mode Search Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Compound Report                                                                                                                                                                                                                                      | A Search Litteria Database Peak Linits Positive Ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Common Reporting Options                                                                                                                                                                                                                             | Values to match                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| File Open Actions                                                                                                                                                                                                                                    | 🕐 Molecular formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Extraction Data Format                                                                                                                                                                                                                               | Negative lons Scoring Search Mode Search Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ∃ Find Compounds                                                                                                                                                                                                                                     | Mass and retention time (retention time optional) Search Criteria Database Peak Limits Positive Ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Find by Auto MS/MS<br>Find by Targeted MS/MS<br>Find by Molecular Feature                                                                                                                                                                            | A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A  A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A |
| ± Find Compounds by Formula                                                                                                                                                                                                                          | Method Editor: Search Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| - Identify Compounds                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Search Database                                                                                                                                                                                                                                      | Search Criteria Database Peak Limits Positive Ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Search Accurate Mass Library                                                                                                                                                                                                                         | Search Linteria Database Peak Linits Neoraive Long Charge carriers Neutral losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Generate Formula:                                                                                                                                                                                                                                    | cion search mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Method Litens      Megative lons     Scoring     Search Didebase     Negative lons     Scoring     Search Citeria     Database     Pea     Spectrum peak searches     Maximum rumber of peaks to search     when peaks are not specified graphically | Which database entries should be examined when searching masses from simple ions?       Image: High part of the searching of the searchi                                 |

Figure 6. MFE compound database search settings.

adducts were searched in this instance, however, further confidence could have been sought (Figure 5B) by choosing additional adducts such as Na<sup>+</sup> and  $NH_a^+$ .

No compound, mass filters or mass defect filters were specified for this search and a maximum charge state of 1 was specified in the MFE method setup. The next step after MFE search was to specify the forensic AMRT database (Figure 6) in the identify compound/search database method editor, highlight all of the MFE-found compounds and search each compound against its content. A mass and retention time (RT) match was specified, since RT database values had already been pre-determined by analyzing individual standards and inserted into a customized compound database. Figure 7 illustrates the results obtained from the MFE operation invoked by pressing the green *process* button highlighted in the title bar of the MFE method editor (Figure 6).

| 🗄 Agilent MassHunter Qualitative Analysis - Screening-DefaultPete_01.m      |                                                      |          |             |               |                    |                   |                  |                      |                                           |                 |
|-----------------------------------------------------------------------------|------------------------------------------------------|----------|-------------|---------------|--------------------|-------------------|------------------|----------------------|-------------------------------------------|-----------------|
| Elle Edit Yew Find Identify Chromatograms Spectra Method Actions Icols Help |                                                      |          |             |               |                    |                   |                  |                      |                                           |                 |
| i 😰 😂 🗔 🖿 🎯 🛷 • 🗹 🏹 🔊 • 🕅 - 🞯 🔛                                             | ا 🗠 اـــ 🕂 الا 🏦 🛆 🖻 📲 🛛                             | ք        | 雅 🚇 🛛       | ∄₩⊪∎ ि        | 🔩 & 🔒              | E                 |                  |                      |                                           |                 |
| 🚹 Data Navigator 🛛 🗙                                                        | 🗄 🎧 Compound List                                    |          |             |               |                    | -                 |                  |                      |                                           | ×               |
| Sort by Data File 🗸 🗸                                                       | Name V                                               | BT       | RT (DB)     | RT Diff (DB)  | Mass               | Mass (DB)         | Diff (DB, ppm)   | Algorithm            | Formula (DB)                              | Score (DB) Ions |
| 🗊 🔽 Cpd 45: Strychnine                                                      | Verapamil                                            | 3.574    | 3.577       | 0.003         | 454.2833           | 454.2832          | -0.31            | Find by Molecular    | C27 H38 N2 O4                             | 98.43 5         |
| 🕀 🔽 Cpd 46: 1.854                                                           | Trazodone                                            | 2.84     | 2.824       | -0.016        | 371.1516           | 371.1513          | -0.81            | Find by Molecular    | C19 H22 CI N5 O                           | 59.25 2         |
| ⊕                                                                           | Temazepam                                            | 3.94     | 3.946       | 0.006         | 300.067            | 300.0666          | -1.62            | Find by Molecular    | C16 H13 CI N2 O2                          | 97.01 5         |
| E ♥ Cpd 49: 1.862                                                           | ▶ Strychnine                                         | 1.788    | 1.769       | -0.019        | 334.1684           | 334.1681          | -0.77            | Find by Molecular    | C21 H22 N2 O2                             | 98.67 4         |
| 🗉 🔽 Cpd 50: 3,4-Methylenedioxyethamphetamine (                              | Proadifen                                            | 4.116    | 4.121       | 0.005         | 353.2355           | 353.2355          | -0.18            | Find by Molecular    | C23 H31 N O2                              | 98.05 4         |
| 🕀 🔽 Cpd 51: 1.862                                                           | Phentermine                                          | 1.77     | 1.75        | -0.02         | 149.1199           | 149.1205          | 3.78             | Find by Molecular    | C10 H15 N                                 | 89.91 3         |
| ⊕ Cpd 52: 1.866                                                             | Phencyclidine (PCP)                                  | 2.931    | 2.901       | -0.03         | 243.199            | 243.1987          | -1.32            | Find by Molecular    | C17 H25 N                                 | 72.24 3         |
|                                                                             | Oxycodone                                            | 1.434    | 1.423       | -0.011        | 315.1475           | 315.1471          | -1.44            | Find by Molecular    | C18 H21 N O4                              | 91.16 4         |
|                                                                             | Oxazepam                                             | 3.524    | 3.528       | 0.004         | 286.0511           | 286.0509          | -0.71            | Find by Molecular    | C15 H11 CI N2 O2                          | 98.37 4         |
|                                                                             | Nitrazepam                                           | 3.535    | 3.544       | 0.009         | 281.0804           | 281.08            | -1.34            | Find by Molecular    | C15 H11 N3 O3                             | 99.2 3          |
| Cpd 57: Heroin                                                              | Methylendioxymethamphetami                           | 1.625    | 1.621       | -0.004        | 193.1108           | 193.1103          | -2.77            | Find by Molecular    | C11 H15 N O2                              | 79.54 2 🚩       |
| H V Lpd 58: 2.323                                                           | 🕴 🛕 Chromatogram Results                             |          |             |               |                    |                   |                  |                      |                                           | ×               |
| Cpd 60: Cocaine                                                             |                                                      |          | 0 C 1       | - H           | A. /¥ 🐹            | % 🗞 🖄 Mi          | nutes            | - 4                  |                                           |                 |
| 🕀 🔽 Cpd 61: 2.476                                                           |                                                      |          |             |               |                    | · · /• /• /• /•   |                  |                      |                                           |                 |
| Cpd 62: Meperidine (Pethidine)                                              | x10% Cpd 45: Strychnine: +ESI El                     | JU Scan  | Frag=150.0  | / Tox_Std_Seq | A-rU28.d           |                   |                  |                      | 1                                         |                 |
|                                                                             | 3-                                                   |          |             |               |                    |                   |                  |                      | 1                                         |                 |
| Cpd 64: 2:040     Cpd 65: Trazodone                                         |                                                      |          |             |               |                    |                   |                  |                      | <u> </u>                                  |                 |
| 🕀 🔽 Cpd 66: 2.928                                                           | 2-                                                   |          | ٨           | 1 700         |                    |                   |                  |                      |                                           |                 |
| Cpd 67: Phencyclidine (PCP)                                                 | 1-                                                   |          | ACpd,₩      | 5: Strychnine | Â                  | 1                 | 6Å A             | A A                  |                                           |                 |
|                                                                             |                                                      |          |             |               |                    |                   |                  |                      |                                           |                 |
|                                                                             |                                                      | 12       | 14 16       | 10 2 2        | 2 24 26            | 20 2 2            | 24 26 2          | 0 1 12 11            | 10 10 5 50                                | E4 EC E0 C      |
| Method Explorer: Screening-DefaultPete_01.m                                 | 0.2 0.4 0.0 0.0                                      | 1 1.2    | 1.4 1.0     | 1.0 2 2.      | Z Z.4 Z.0<br>Count | s vs. Acquisition | Time (min)       | .0 4 4.2 4.4         | 4.0 4.0 3 3.2                             | 3.4 3.8 3.8 8   |
| • Chromatogram                                                              | Chromatogram Results जि∰ MS I                        | ormula R | iesults 🛱   | DB Search Re  | sults: Cpd 45: S   | itrychnine        |                  |                      |                                           |                 |
| ± Spectrum                                                                  | 🕴 📑 Method E ditor: Find Compound                    | s by Mo  | lecular Fea | ure           | ×                  | III MS Spectru    | m Results        |                      |                                           | ×               |
| 🗆 General                                                                   | 🗄 🖾 🖉 👻 🖓 🕶 🔁 🕩 🕶 🕅 Method I                         | tems 🔹   | 😕 🖬         |               |                    | 2 ↔ \$ 6          | २ 🗈 💖 🗸          | ା <u>କୁ ଏ</u> ାଚ ଜ ା | ▼ <u>11</u> <sup>3</sup> / <sub>8</sub> 9 | 6 🐝 🖄 📑         |
| Analysis Report                                                             | Extraction Ion Species                               | Cha      | rge State   | Compound      | Filters            | x10.5 Cpd 45      | : Strychnine: +E | SI MFE Spectrum (1.7 | 53-1.936 min) Frag=1                      | 50.0V Tox_Std   |
| Compound Benort                                                             | Mass Filters Mass Defect                             |          | 🛕 Resul     | s Adv.        | anced              | 6.5-              | * 33             | 35.1757              |                                           |                 |
| Composition Reporting Onlines                                               | Previous results                                     |          |             |               | <u>^</u>           | 6-                | (r.              |                      |                                           |                 |
|                                                                             | Delete previous compounds                            |          |             |               |                    | 5.5-              |                  |                      |                                           |                 |
| File Upen Actions                                                           |                                                      |          |             |               |                    | 5-                |                  |                      |                                           |                 |
| Extraction Data Format                                                      | New results                                          |          |             |               |                    | 4.5-              |                  |                      |                                           |                 |
| Find Compounds                                                              | Highlight first compound     Highlight all compounds |          |             |               |                    | 4-                |                  |                      |                                           | 24 Jul          |
| Find by Auto MS/MS                                                          | Chromatograms and spectra                            |          |             |               |                    | 3.5-              |                  |                      |                                           |                 |
| Find by Targeted MS/MS                                                      | Extract EIC                                          |          |             |               | =                  | 3-                |                  |                      |                                           | SH A            |
| Find by Molecular Feature                                                   | Extract ECC                                          |          |             |               |                    | 2.5-              |                  |                      | н 🗸 н                                     |                 |
| • Find Compounds by Formula                                                 | Extract MFE spectrum                                 |          |             |               |                    | 15                |                  | * 336.               | 1788                                      |                 |
| Identify Compounds                                                          | Extract raw spectrum                                 |          |             |               |                    | 1-                |                  | (IN +F               | 0.                                        |                 |
| Compound Automation Steps                                                   | Clip extracted raw spectrum                          | _        |             |               |                    | 0.5-              |                  |                      | 337.18<br>(M+H)-                          | 7               |
| Worklist Automation                                                         | Asymmetric (m/z) 💟                                   | - 5      | .0000       | + 10.0000     |                    | 0-                | 334.5 335        | 335.5 336            | 336.5 337                                 | 337.5 338       |
| - Funget                                                                    | Diselaulisite                                        |          |             |               | ~                  |                   |                  | Thompsons vs. Mass-  | to-Charge (m/z)                           | *               |

Figure 7. MFE compound database search results using Agilent MassHunter Qualitative Analysis program.

These results are detailed in Table 3 and show that all 25 compounds of the LC/MS Toxicology Test Mix were identified for this sample injection. This confirms that the data analysis settings for the find and identify steps are appropriate for the identification process. Many of the 3,000+ compounds identified by MFE did not find any PCDL matches as expected and the data analysis option of excluding non-positives was used to report only the database hits.

Isobaric compounds such as codeine/hydrocodone and methamphetamine/phentermine were also correctly identified and distinguished automatically, by using the retention capability of the PCDL database and by inputting the predetermined retention time of each analyte for this chromatographic methodology as outlined in the Agilent G6855AA MassHunter Personal Forensic Toxicology Database Quick Start Guide [3].

#### Table 3. MFE Compound and Database Search Results

| Name                                    | RT    | RT (DB) | RT Diff<br>(DB) | Mass     | Mass<br>(DB) | Diff<br>(DB, ppm) | Formula (DB)                                      | Score<br>(DB) |
|-----------------------------------------|-------|---------|-----------------|----------|--------------|-------------------|---------------------------------------------------|---------------|
| Verapamil                               | 3.574 | 3.577   | 0.003           | 454.2833 | 454.2832     | -0.31             | $C_{27}^{} H_{38}^{} N_2^{} O_4^{}$               | 98.43         |
| Trazodone                               | 2.84  | 2.824   | -0.016          | 371.1516 | 371.1513     | -0.81             | $C_{19} H_{22} CI N_5 O$                          | 59.25         |
| Temazepam                               | 3.94  | 3.946   | 0.006           | 300.067  | 300.0666     | -1.62             | $C_{16} H_{13} CI N_2 O_2$                        | 97.01         |
| Strychnine                              | 1.788 | 1.769   | -0.019          | 334.1684 | 334.1681     | -0.77             | $C_{21} H_{22} N_2 O_2$                           | 98.67         |
| Proadifen                               | 4.116 | 4.121   | 0.005           | 353.2355 | 353.2355     | -0.18             | C <sub>23</sub> H <sub>31</sub> N O <sub>2</sub>  | 98.05         |
| Phentermine                             | 1.77  | 1.75    | -0.02           | 149.1199 | 149.1205     | 3.78              | C <sub>10</sub> H <sub>15</sub> N                 | 89.91         |
| Phencyclidine (PCP)                     | 2.931 | 2.901   | -0.03           | 243.199  | 243.1987     | -1.32             | C <sub>17</sub> H <sub>25</sub> N                 | 72.24         |
| Oxycodone                               | 1.434 | 1.423   | -0.011          | 315.1475 | 315.1471     | -1.44             | C <sub>18</sub> H <sub>21</sub> N O <sub>4</sub>  | 91.16         |
| Oxazepam                                | 3.524 | 3.528   | 0.004           | 286.0511 | 286.0509     | -0.71             | $\rm C_{15}  H_{11}  CI  N_2  O_2$                | 98.37         |
| Nitrazepam                              | 3.535 | 3.544   | 0.009           | 281.0804 | 281.08       | -1.34             | $C_{15} H_{11} N_3 O_3$                           | 99.2          |
| Methylendioxymethamphetamine<br>(MDMA)  | 1.625 | 1.621   | -0.004          | 193.1108 | 193.1103     | -2.77             | $C_{11} H_{15} N O_2$                             | 79.54         |
| Methamphetamine                         | 1.606 | 1.593   | -0.013          | 149.1197 | 149.1205     | 4.82              | C <sub>10</sub> H <sub>15</sub> N                 | 81.88         |
| Methadone                               | 3.638 | 3.638   | 0               | 309.2094 | 309.2093     | -0.61             | C <sub>21</sub> H <sub>27</sub> N O               | 99.67         |
| Meperidine (Pethidine)                  | 2.477 | 2.456   | -0.021          | 247.1577 | 247.1572     | -1.7              | C <sub>15</sub> H <sub>21</sub> N O <sub>2</sub>  | 97.91         |
| Lorazepam                               | 3.616 | 3.621   | 0.005           | 320.012  | 320.0119     | -0.19             | $C_{15} H_{10} CI_2 N_2 O_2$                      | 98.27         |
| Hydrocodone                             | 1.575 | 1.56    | -0.015          | 299.1525 | 299.1521     | -1.2              | C <sub>18</sub> H <sub>21</sub> N O <sub>3</sub>  | 85.2          |
| Heroin                                  | 2.322 | 2.297   | -0.025          | 369.1579 | 369.1576     | -0.63             | C <sub>21</sub> H <sub>23</sub> N O <sub>5</sub>  | 98.97         |
| Diazepam                                | 4.272 | 4.275   | 0.003           | 284.072  | 284.0716     | -1.36             | $C_{16} H_{13} CI N_2 O$                          | 58.97         |
| delta9-Tetrahydrocannabinol (THC)       | 5.275 | 5.292   | 0.017           | 314.2243 | 314.2246     | 0.94              | $C_{21} H_{3} 0 O_{2}$                            | 94.83         |
| Codeine                                 | 1.169 | 1.16    | -0.009          | 299.1524 | 299.1521     | -0.72             | C <sub>18</sub> H <sub>21</sub> N O <sub>3</sub>  | 72.49         |
| Cocaine                                 | 2.44  | 2.418   | -0.022          | 303.1475 | 303.1471     | -1.29             | C <sub>17</sub> H <sub>21</sub> N O <sub>4</sub>  | 98.03         |
| Clonazepam                              | 3.625 | 3.638   | 0.013           | 315.0412 | 315.0411     | -0.42             | $C_{15} H_{10} CI N_3 O_3$                        | 98.72         |
| Alprazolam                              | 3.726 | 3.726   | 0               | 308.083  | 308.0829     | -0.33             | C <sub>17</sub> H <sub>13</sub> CI N <sub>4</sub> | 96.77         |
| 3,4-Methylenedioxyethamphetamine (MDEA) | 1.862 | 1.846   | -0.016          | 207.1263 | 207.1259     | -1.8              | $C_{12} H_{17} N O_2$                             | 97.4          |
| 3,4-Methylendioxyamphetamine<br>(MDA)   | 1.474 | 1.473   | -0.001          | 179.095  | 179.0946     | -2.23             | $C_{10} H_{13} N O_2$                             | 86.15         |

#### Customized databases with user-added retention times

One of the benefits of the Agilent Personal Forensic Toxicology Database is that it can be saved to a user customized form. To create a read-write customizable database the user selects New Database from the PCDL File menu. The PCDL program then allows selection of an existing database and the naming of a new database. A description can also be given. When *Create* is selected, the database with the new name contains all the entries of the selected databases. In this way multiple custom or smaller, more targeted databases can be created depending on the analytes of interest. A technical note on the Pesticide PCD [2] shows how users can run standards with unique chromatographic conditions and easily update or insert retention times in their custom database. Customizing and updating PCDL AMRT compound data is accomplished by using tab 4 (from left) of the PCDL program interface. This is shown in Figure 8, where the options of *Add New, Save as New, Update Selected*, and *Delete Selected* are clearly present. When *Allow Editing* is activated from the *Database/Library* pull-down menu, any of the displayed information fields in the users' custom database can be changed, added to, or deleted. Furthermore, the ability to insert \*.mol molecular diagrams to any new database entry is possible from the *Edit Compounds* tab.



Figure 8. Edit Compounds PCDL interface tab.

## Workflow C. Data mining using 'Find by Formula' (FBF)

The Find by Formula data-mining algorithm of the MassHunter Qualitative Analysis program uses a pre-defined empirical formula (or list of formulae) to search TOF and Q-TOF (MS) data files for evidence that peaks may be present. The PCDL-format databases can also be specified as the list of empirical formulae. Depending on the size and content of the database, FBF can take slightly longer than the MFE approach. However, FBF is highly accurate and sensitive especially at very low analyte concentration levels.

Figure 9 illustrates the results screen displayed after a Find by Formula search has been undertaken using the LC/MS Toxicology Test Mix data file. All 25 compounds were matched with accurate mass, abundance and isotopic spacing in a combined score (shown) together with retention time. The DA method editor settings used for this FBF analysis are shown in Figure 10, where Tox\_std\_01.cdb was a custom PCDL-format database.

When reporting the results, FBF assesses the chromatographic peak shape and isotopic match scores and returns the best match, even if there are several peaks displayed in the extracted compound chromatogram of similar mass.

Additional adducts  $[M+Na]^+$ ,  $[M+NH_4]^+$  and  $[2M+H]^+$  were used during this FBF data screen. The extra information is displayed in the spectrum view and results table to provide added confirmatory evidence. Figure 9 shows the Temazepam spectrum which displays both  $[M+H]^+$  and  $[M+Na]^+$  adducts.



Figure 9. Find By Formula Database search results, Agilent MassHunter Qualitative Analysis program.



Figure 10. Find By Formula Database search - Method editor settings.

More in-depth information can be obtained from MassHunter Qualitative Analysis program Help files or Agilent MassHunter Workstation Software Qualitative Analysis Familiarization Guide [5].

## Reporting

Manual, MFE and FBF database searching all use the identical method of compound reporting options in the MassHunter Qualitative Analysis program software interface. Figure 11 details the reporting options which are based upon the standard compound report template CompoundReportWithIdentificationHits.xlsx. Under the General section of the method explorer, the 'Common reporting options' link opens the corresponding method editor pane, shown on the left side of Figure 11. MassHunter Qualitative Analysis program treats search algorithm data and database searches as compound-centric data. Therefore, to report the results the appropriate compound report template must be chosen. In this example, the correct report template is displayed.

| 🟠 🔄 🔻 🖓 🔹 💽 🔹 Method Items 🔹 🔀 🌆                 | 🚰 🔄 👻 🖓 🔹 🕑 🔹 Method Items 🔹 😕 🏢                               |
|--------------------------------------------------|----------------------------------------------------------------|
| emplates Options                                 | Compounds                                                      |
| Report template folder                           | Show compound table                                            |
|                                                  | Sort by: Retention time                                        |
| ta_MassHunter\Report Templates\Qual\en-US\Letter | Cast and as                                                    |
| Parast terrelates                                |                                                                |
| Analysis and the state                           | <ul> <li>Exclude details for unidentified compounds</li> </ul> |
| Analysis report template .                       | Chromatograms                                                  |
|                                                  | Show user chromatogram(s)                                      |
| Lompound report template:                        | Characterized absences and a                                   |
| CompoundHeportWithIdentificationHits.xtx         | V show composite cillonatogram(s)                              |
| Qualitative method report template               | Compound spectrum (MS)                                         |
| QualitativeMethodReport.xltx                     | Show MS spectrum Show MS peak table                            |
| Anne Address and the second transferration       | Show predicted isotope match table                             |
| Acquisition Method Report of                     | Show MS spectrum (zoomed in on special peaks)                  |
|                                                  | Zoom padding 100 + 100 m/z                                     |
|                                                  |                                                                |
|                                                  | Uverlay predicted isotope distribution                         |
|                                                  | Compound spectrum (MS/MS)                                      |
|                                                  | Show MS/MS spectrum Show MS/MS peak tab                        |
|                                                  | 1 there example a state                                        |
|                                                  | Library search results                                         |
|                                                  | Show library spectrum Show difference spect                    |

Figure 11. Common compound reporting options for Manual/MFE/FBF PCDL Searches.

More specific content can then be specified by choosing the information required for the Toxicology screen report using the Compound Report options of the method editor (shown on the right in Figure 11).

Decisions about the report content are decided here. For example, if the check box for *Exclude Details for Unidentified Compounds* is activated, then only positive PCDL identifications will be reported. The option to report compound extracted chromatograms, individual MS spectra, or summary results and individual compound tables is also determined from the compound report method editor.

Once all the correct settings have been achieved for the reporting of results, the green button (circled in Figure 12) activates the *printing dialogue* window which gives various options for directing the output of the data file results. The user can choose to send results directly to a specified printer or save the results in excel format or public distribution format (pdf). Alternatively, the results report can be processed by choosing the *Print Compound Report* option from the drop-down *File* menu.



Figure 12. Compound Reporting for Manual/MFE/FBF PCDL Searches.

Figure 13 illustrates a typical report summary front page for the LC/MS Toxicology Test Mix.

|                                                           |                                  | Qu                                               | alitat                                          | ive Com                                           | pound                                                   | Report           | t             |              |
|-----------------------------------------------------------|----------------------------------|--------------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|------------------|---------------|--------------|
| Data File<br>Sample Type<br>Instrument Name<br>Acq Method | Tac_S<br>Sampi<br>SELKC<br>PSton | Rd_SeqA+r028<br>le<br>)-90500107<br>e_Tox_Std_01 | d Si<br>P<br>U<br>.m A                          | ample Name<br>osition<br>ser Name<br>cquired Time | Tox_Std_100p;<br>Vial 2<br>Pete Stone<br>7/17/2009 9:43 | )<br>1:03 PM     |               |              |
| IRM Calibration Status                                    | Succe                            | 55                                               | D                                               | A Method                                          | Screening-Defa                                          | ultPete_01.m     |               |              |
| Comment                                                   |                                  |                                                  |                                                 |                                                   |                                                         |                  |               |              |
| Compound Table                                            | BT                               | Mass                                             |                                                 | Name                                              | DB Fo                                                   | mula             | DB Diff (nom) | Hits<br>(DB) |
| Cod 10: Codeine                                           | 1.169                            | 299.1524                                         | Codeine                                         |                                                   | C1810                                                   | 1 N 03           | -0.72         | 2            |
| Cpd 17: Oxycodone                                         | 1.434                            | 315.1475                                         | Oxycodone                                       |                                                   | C18 H2                                                  | 1 N O4           | -1.44         | 1            |
| Cpd 23: 3,4-<br>Methylendioxyamphetamine<br>(MDA)         | 1.474                            | 179.095                                          | 3,4-<br>Methylendio<br>(MDA)                    | wamphetamine                                      | C10 H1                                                  | 3 N O2           | -2.23         | 1            |
| Cod 29: Hydrocodone                                       | 1.575                            | 299.1525                                         | Hydrocodon                                      | e                                                 | C18 H2                                                  | 1 N 03           | -1.2          | 2            |
| Cpd 34: Methamphetamine                                   | 1.606                            | 149.1197                                         | Methamphet                                      | tamine                                            | C10 H15 N                                               |                  | 4.82          | 2            |
| Cpd 39:<br>Methylendioxymethampheta<br>mine (MDMA)        | 1.625                            | 193.1108                                         | Methylendio<br>mine (MDM/                       | xymethampheta<br>\}                               | С11 Н1                                                  | 5 N O2           | -2.77         | 1            |
| Cpd 41: Phentermine                                       | 1.77                             | 149.1199                                         | Phentermine                                     | :                                                 | C10 F                                                   | 115 N            | 3.78          | 2            |
| Cpd 45: Strychnine                                        | 1.788                            | 334.1694                                         | Strychnine                                      |                                                   | C21 H22 N2 C2                                           |                  | -0.77         | 1            |
| Cpd 50: 3,4-<br>Methylenedioxyethamphetami<br>ne (MDEA)   | 1.862                            | 207.1263                                         | 3,4-<br>Methylenedioxyethamphetami<br>ne (MDEA) |                                                   | C12 H1                                                  | 7 N C2           | -1.8          | 1            |
| Cpd 57: Heroin                                            | 2.322                            | 369.1579                                         | Heroin                                          |                                                   | C21 H2                                                  | 3 N O5           | -0.63         | 1            |
| Cpd 60: Cocaine                                           | 2.44                             | 303.1475                                         | Cocaine                                         |                                                   | C17 H2                                                  | C17 H21 N O4     |               | 1            |
| Cpd 62: Meperidine<br>(Pethidine)                         | 2.477                            | 247.1577                                         | Meperidine (                                    | (Pethidine)                                       | C15 H2                                                  | 1 N O2           | -1.7          | 1            |
| Cpd 65: Trazodone                                         | 2.84                             | 371.1516                                         | Trazodone                                       |                                                   | C19 H22                                                 | U N5 0           | -0.81         |              |
| Cpd 67: Phencyclidine (PCP)<br>Cpd 73: Oxazepam           | 2.931                            | 243.199<br>286.0511                              | Phencyclidin<br>Oxazepam                        | e (PCP)                                           | C17 H25 N                                               |                  | -1.32         | 1            |
| Cpd 74: Nitrazepam                                        | 3.535                            | 281.0804                                         | Nitrazepam                                      |                                                   | C15 H1                                                  | 1 N3 O3          | -1.34         | 1            |
| Cpd 76: Verapamil                                         | 3.574                            | 454,2833                                         | Verapamil                                       |                                                   | C27 H3                                                  | 8 N2 O4          | -0.31         | 1            |
| Cpd 78: Lorazepam                                         | 3.616                            | 320.012                                          | Lorazepam                                       |                                                   | C15 H10                                                 | CI2 N2 O2        | -0.19         | 1            |
| Cpd 79: Clonazepam                                        | 3.625                            | 315.0412                                         | Clonazepam                                      |                                                   | C15 H10                                                 | CI N3 O3         | -0.42         | 1            |
| Cpd 82: Methadone                                         | 3.638                            | 309.2094                                         | Methadone                                       |                                                   | C21 H                                                   | 27 N O           | -0.61         | 1            |
| Cpd 96: Alprazolam                                        | 3.726                            | 308.083                                          | Alprazolam                                      |                                                   | C17 H1                                                  | 3 CI N4          | -0.33         | 1            |
| Cpd 93: Temazepam                                         | 3.94                             | 300.067                                          | Temazepam                                       |                                                   | C16 H13 CI N2 O2                                        |                  | -1.62         | 1            |
| Cpd 101: Proadifen                                        | 4.116                            | 353,2355                                         | Proadifen                                       |                                                   | C23 H3                                                  | 1 N O2           | -0.18         | 1            |
| Cpd 110: Diazepam                                         | 4.272                            | 284.072                                          | Diazepam                                        | Diazepam                                          |                                                         | CI N2 O          | -1.36         | 1            |
| Cpd 243: delta9-<br>Tetrahydrocannabinol (THC)            | 5.275                            | 314.2243                                         | delta9-Tetra<br>(THC)                           | hydrocannabinol                                   | C21 H                                                   | 30 02            | 0.94          | 1            |
| Compound Label<br>Cod 10: Codeine                         | Name<br>Codeine                  |                                                  | RT<br>1.169                                     | Algorithm<br>Find by Mole                         | ular Feature                                            | Mass<br>299.1524 |               |              |

Figure 13. Output Report from MFE/Database search.

## **Worklist Automation**

Once the analyst or operator has decided on the correct settings for all aspects of the data mining routines, the PCDL search options and reporting options (outlined in this application note) can be saved to one convenient data analysis method. This method can be used for repetitive and consistent data manipulation from week to week. This is achieved by choosing the *Save As* option from the drop-down *Method* menu in the MassHunter Qualitative Analysis program interface. This method will then open as the default DA method when the MassHunter Qualitative Analysis program is started until another DA method is saved or loaded.

An added advantage to saving reprocessing options is the *Worklist Automation* functionality built into the MassHunter Qualitative Analysis program. Figure 14 outlines the setup of Worklist automation and specifically addresses a routine that would automatically interrogate a data file using MFE and PCDL database search followed by reporting of results to the specified printer or data file location.

In this example, a list of automatic data analysis steps are defined in order of operation, as they would be undertaken manually.

First, the sample data file is loaded, and all previous results (if any) are cleared. Next, the *Find by MFE* routine according to the saved DA method setup is performed with the compound results searched against the PCDL database specified in the DA method. Finally, any results are automatically sent to a final report, the format of which has been determined and also saved to the DA method.

Two further steps must be performed to run such a worklist automation routine automatically during sample data acquisition.

First, the DA analysis method and the Worklist Automation routine must be saved into the acquisition method by using the *Save As* option from the *Method* menu and selecting the MassHunter acquisition method name. Once *OK* is selected, the data analysis method becomes an integral part of the Acquisition method.

|                                                       |                                    |     | Worklist Run Parameters                                                           |
|-------------------------------------------------------|------------------------------------|-----|-----------------------------------------------------------------------------------|
| E Mathad E dito                                       | r: Reporting Options               | ~   | Operator name:                                                                    |
|                                                       |                                    | ^   | Run Information                                                                   |
|                                                       |                                    |     | Run Type: Standard Start   Execution for Synchronous  Acquisition-DA: Synchronous |
| Print report                                          |                                    |     | Part of method to Both Acquisition and D/ V Stop worklist on DA error             |
| Printer name:                                         |                                    |     | run:                                                                              |
| T miller fidance.                                     |                                    |     | Method Paths                                                                      |
| Save report                                           |                                    |     | Method E ditor: Assign Actions to Run from Worklist 🗙                             |
| Save report as                                        | Excel file Save report as PDF file | × : | ☆     ✓     ✓     Method Items ▼     □     □                                      |
| <ul> <li>Inside data</li> <li>At an anifes</li> </ul> | a nie s reports subairectory       |     |                                                                                   |
| D:\MassH                                              | u arectory:                        |     |                                                                                   |
| - If report file alr                                  | adu avists                         | _   | Integrate Chromatograms                                                           |
| O Overwrite                                           | existing report                    |     | Integrate and Extract Peak Spectra<br>Smooth Chromatograms                        |
| Auto-gene                                             | rate new report file name          |     | Generate Compound Report                                                          |
|                                                       |                                    |     | Find Compounds by Auto MS/MS<br>Find Compounds by Taraeted MS/MS                  |
|                                                       | 🗄 Find Compounds by Formula        | A   | Find Compounds by Molecular Feature                                               |
|                                                       | Identify Compounds                 | A   | Correlate UV Chromatograms with Compounds                                         |
|                                                       | Compound Automation Steps          |     | <b>•</b>                                                                          |
|                                                       |                                    |     | Actions to be run                                                                 |
|                                                       |                                    |     | Find Compounds by Molecular Feature                                               |
|                                                       | Reporting Uptions                  |     | Search Database for Compounds Generate Compound Report                            |
|                                                       | Colosted Ranges                    |     |                                                                                   |
|                                                       |                                    |     |                                                                                   |
|                                                       | ± Export                           |     |                                                                                   |
|                                                       |                                    |     |                                                                                   |
|                                                       |                                    |     |                                                                                   |
|                                                       |                                    | - S | elect range                                                                       |
|                                                       |                                    |     |                                                                                   |
|                                                       |                                    | C   | Uperate on retention times (in minutes)                                           |
|                                                       |                                    |     |                                                                                   |

Figure 14. Worklist automation method setup.

Finally, to automatically perform Worklist Data Analysis during data acquisition, the *Worklist Run Parameters* window must be opened from the *Worklist* menu of MassHunter Acquisition software. Figure 14 shows a screen capture of this window with the settings highlighted so that the DA routine will operate *Parts of method to Run - Both Acquisition and DA*. The data analysis has the option to be run *Synchronously* or *Asyncronously*.

## Conclusions

The Agilent MassHunter Personal Forensic Toxicology Database Kit has been developed to provide comprehensive screening of samples for both targeted and non-targeted approaches. The database includes accurate mass data for around 6,700 compounds of potential interest and gives the user flexibility in its use.

The MassHunter Personal Forensic Toxicology Database Kit offers:

- Fast and easy startup of complex analyses
- A comprehensive database of around 6,700 compounds including
  - · Chemical structures, formulas and exact masses
  - Direct Chemical Internet links to PUBCHEM and ChemSpider
  - IUPAC names
  - The ability to create MS/MS spectral libraries
  - Complete customization with additions/deletions of retention time for chromatographic conditions developed by the user
- Results can be searched from within the PCDL software interface or directly from the MassHunter Qualitative Analysis program.
- Results can be data-mined with powerful searching tools, such as the Molecular Feature Extractor and Find by Formula
- Searches of the database can be partially or completely automated using MassHunter Qualitative Analysis program and the MassHunter Acquisition Worklist

## References

- 1. Multi-Residue Pesticide Analysis with Dynamic Multiple Reaction Monitoring and Triple Quadrupole LC/MS/MS, *Agilent Technologies Application Note*, publication number 5990-4253EN.
- 2. Pesticide Personal Compound Database for Screening and Identification, *Agilent Technologies Technical Note*, publication number 5990-3976EN.
- Agilent Personal ForensicToxicology Database Quick Start Guide, Agilent Technologies, publication number G6855-90003.
- 4. Agilent G6855AA MassHunter Personal Forensic Toxicology Database Kit Quick Start Guide, *Agilent Technologies*, publication number 5990-4264EN
- 5. Agilent MassHunter Workstation Software Qualitative Analysis Familiarization Guide, *Agilent Technologies*, publication number G3335-90060.

#### www.agilent.com/chem

#### For Forensic Use.

This information is subject to change without notice.

© Agilent Technologies, Inc., 2009, 2016 Printed in the USA March 17, 2016 5990-4252EN



## **Agilent Technologies**