

Instruction Manual

Catalog ##600310 (100 U), #600312 (500 U), and #600314 (1000 U) Revision C.0

For Research Use Only. Not for use in diagnostic procedures. 600310-12

LIMITED PRODUCT WARRANTY

This warranty limits our liability to replacement of this product. No other warranties of any kind, express or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Agilent. Agilent shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product.

ORDERING INFORMATION AND TECHNICAL SERVICES

Email

techservices@agilent.com

World Wide Web

www.genomics.agilent.com

Telephone

Location	Telephone
United States and Canada	800 227 9770
Austria	01 25125 6800
Benelux	02 404 92 22
Denmark	45 70 13 00 30
Finland	010 802 220
France	0810 446 446
Germany	0800 603 1000
Italy	800 012575
Netherlands	020 547 2600
Spain	901 11 68 90
Sweden	08 506 4 8960
Switzerland	0848 8035 60
UK/Ireland	0845 712 5292
All Other Countries	Please visit <u>www.agilent.com/genomics/contactus</u>

CONTENTS

Materials Provided1
Notices to Purchaser
Introduction
Properties of Agilent Hot Start PCR Enzymes
Critical Optimization Parameters4
DNA Template Quality and Concentration4
Enzyme Concentration
DMSO
Primer Design and Concentration5
Deoxynucleotide Concentrations5
Cycling Parameters
GC-Rich Targets
Protocol7
Troubleshooting9
References 10
Endnotes10
MSDS Information
Quick-Reference Protocol11

MATERIALS PROVIDED

	Quantity		
	Catalog #600310	Catalog #600312	Catalog #600314
Material provided	(100 U)	(500 U)	(1000 U)
Herculase hotstart DNA polymerase (5 U/ μ l)	20 µl	100 μl	200 µl
10× Herculase reaction buffer	1 ml	$2 \times 1 \text{ ml}$	$4 \times 1 \text{ ml}$
Dimethyl Sulfoxide (DMSO)	1 ml	1 ml	1 ml

STORAGE CONDITIONS

All Components: -20°C

NOTICES TO PURCHASER

Use of this product is licensed under U.S. Patent Nos. 5,587,287 and corresponding foreign patents Europe, Hong Kong, and Japan

NOTICE TO PURCHASER: LIMITED LICENSE

Use of this product is covered by one or more of the following US patents and corresponding patent claims outside the US: 6,258,569, 6,171,785, 6,127,155, 6,030,787, 5,994,056, 5,876,930, 5,804,375, 5,789,224, 5,773,258 (claims 1 and 6 only), 5,723,591, 5,677,152 (claims 1 to 23 only), 5,618,711, 5,538,848, and claims outside the US corresponding to expired US Patent No. 5,079,352. The purchase of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using only this amount of product for the purchaser's own internal research. No right under any other patent claim and no right to perform commercial services of any kind, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. This product is for research use only. Diagnostic uses under Roche patents require a separate license from Roche. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.

Limited Label License for Pfu-Containing DNA Polymerase Products

This product is covered by the claims of one or more of the following U.S. Patents: 5,948,663; 6,183,997; 6,333,165; 6,379,553; 6,444,428. Purchase of this product conveys to the purchaser only the non-transferable right under these patents to use the product *for research use only by the purchaser*. No rights are granted to the purchaser hereunder to sell, modify for resale or otherwise transfer this product, either alone or as a component of another product, to any third party. Agilent reserves all other rights, and this product may not be used in any manner other than as provided herein. For information on obtaining a license to use this product for purposes other than research, please contact Agilent Technologies, Business Development, 11011 North Torrey Pines Road, La Jolla, California 92037. Phone (858) 535-5400.

Revision C.0

© Agilent Technologies, Inc. 2015.

Herculase hotstart DNA polymerase* provides superior performance in applications requiring high fidelity amplification over a broad range of target lengths and complexities (0.1-48 kb).^{1, 2} Herculase hotstart DNA polymerase features a novel DNA polymerase composition that consists predominantly of *Pfu* DNA polymerase, combined the exclusive thermostable ArchaeMaxx polymerase-enhancing factor and *Taq2000* DNA polymerase. This unique *Pfu*-based formulation is provided with a buffer optimized to promote high yield, specificity, and amplification of a wide range of targets. As a result, Herculase hotstart DNA polymerase can be used to successfully amplify small targets as well as genomic targets up to 37 kb and vector targets up to 48 kb, while maintaining an accuracy greater than *Taq* DNA polymerase and other DNA polymerase mixtures.

A key component of Herculase hotstart DNA polymerase is the ArchaeMaxx polymerase-enhancing factor. The ArchaeMaxx factor eliminates a PCR inhibitor and promotes shorter extension times, higher yield, and greater target length capabilities. The ArchaeMaxx factor improves the yield of products by overcoming dUTP poisoning, which is caused by dUTP accumulation during PCR through dCTP deamination.³ Once incorporated, dU-containing DNA inhibits *Pfu* and most archaeal proofreading DNA polymerases, such as Vent[®] and Deep Vent[®] DNA polymerases, limiting their efficiency.³ The ArchaeMaxx factor functions as a dUTPase, converting poisonous dUTP to harmless dUMP and inorganic pyrophosphate, resulting in improved overall PCR performance.

Herculase hotstart DNA polymerase provides high specificity and detection sensitivity, while facilitating high-throughput robotic PCR applications. Herculase hotstart DNA polymerase is formulated with a combination of antibodies that effectively neutralize DNA polymerase and 3'-5' exonuclease (proofreading) activities. Full enzyme activity is regained upon denaturation of the antibodies during the initial denaturation step. See the table in *Properties of Agilent Hot Start PCR Enzymes*, below, for a comparison of the Hot-Start PCR enzymes offered by Agilent.

* U.S. Patent Nos. 6,734,293, 6,444,428; 6,183,997; and 5,948,663.

PROPERTIES OF AGILENT HOT START PCR ENZYMES

Hot Start PCR	Hot Start	Activities	Activation	Applications
enzyme	Method	Neutralized	Procedure ^a	
Herculase hotstart	Antibody	DNA polymerase,	PCR Activation	 challenging cloning targets long and/or GC-rich targets higher fidelity than Taq
DNA polymerase		3'-5' exonuclease	30 cycles	DNA polymerase
PfuTurbo hotstart	Antibody	DNA polymerase,	PCR Activation	Highest fidelityGenomic DNA templates
DNA polymerase		3′-5′ exonuclease	30 cycles	up to 19 kb
SureStart Taq DNA polymerase	Chemical	DNA polymerase, 5'-3' exonuclease	Pre-PCR Activation (9–12 minutes @ 95°C) 30 cycles or	• Routine PCR up to 3 kb
			40 cycles	

PCR activation means that full enzyme activity is recovered during temperature cycling, either during the initial denaturation step (antibody-based formulations) or within the first 5–15 cycles (chemical hot start). For SureStart Taq DNA polymerase, slow enzyme activation during temperature cycling typically necessitates the use of additional PCR cycles to achieve desired product yield (35–45 cycles). In the Pre-PCR activation method, the enzyme is activated prior to temperature cycling, and no additional cycles are necessary.

CRITICAL OPTIMIZATION PARAMETERS

All PCR amplification reactions require optimization to achieve the highest product yield and specificity. Critical optimization parameters for successful PCR using Herculase hotstart DNA polymerase are outlined in Table I and discussed in the following section. The provided Herculase hotstart buffer contains the magnesium ion concentration that is optimal for the enzyme. Adjusting the magnesium concentration is not recommended.

TABLE I Optimization Parameters and Suggested Reaction Conditions (50 μ l reaction volume)

Parameter	Typical Targets ≤10 kb	G-C Rich Targets <10 kb	Targets >10 kb
Input template	100–200 ng genomic DNA	100–200 ng genomic DNA	250–1000 ng genomic DNA
	1–15 ng vector DNA	1–15 ng vector DNA	15–60 ng vector DNA
Herculase Hotstart	2.5 U	2.5 U	5.0 U
DNA polymerase			
DMSO concentration ^a	0%	4–8%	0–3% for genomic targets <23 kb
			3–6% for genomic targets >23 kb
			5–7% for lambda targets >30 kb
			4–8% for G-C rich targets
Primers (each)	~100 ng (0.25 µM)	~100 ng (0.25 µM)	~200 ng (0.5 µM)
dNTP concentration	200 μ M each dNTP	200 μ M each dNTP	500 μM each dNTP
	(0.8 mM total)	(0.8 mM total)	(2 mM total)
Extension time	1 min per kb	1 min per kb	≥1 min per kb,
			not to exceed 1 hour
Extension temperature	72°C	72°C	68°C
Denaturing	92–95°C	92–98°C	92°C
temperature			

^a Titrate the DMSO in 1% increments over the indicated range for each set of templates/primer pairs.

DNA Template Quality and Concentration

Successful amplification is dependent upon the purity, integrity, concentration, and molecular weight of the DNA template. Isolation of intact, high molecular weight genomic DNA may be achieved by using the Agilent DNA Extraction Kit or the RecoverEase DNA isolation kit. Potential shearing of the genomic DNA template is minimized by the use of wide-bore tips for pipetting or mixing of the template. Additionally, freezing of high molecular weight templates should be avoided; storage at 4°C is recommended. The length of an intact genomic DNA template should be >50 kb.

For amplifying genomic DNA templates, use 100–250 ng of template for targets of ≤ 10 kb. Optimal concentrations of template for longer complex targets, up to 37 kb, may range between 250 ng and 1 µg using reaction volumes of 50 µl. To amplify low-complexity targets (for example, lambda DNA or cloned DNA), use 1–15 ng for targets ≤ 10 kb and 15–60 ng for targets >10 kb. Excess template DNA can inhibit the PCR reaction.

Enzyme Concentration

Robust product yield requires an adequate DNA polymerase concentration. The use of 2.5 U/50- μ l reaction consistently generates high yield of templates ≤ 10 kb. Longer templates require 5 U of Herculase hotstart DNA polymerase per 50- μ l reaction for optimal results.

DMSO

DMSO is provided as a means of obtaining higher yields of PCR product with extra-long targets or GC-rich targets. The DMSO concentration must be titrated for each application, since the degree to which DMSO enhances product yield and specificity varies according to target length, complexity, and GC content.

For genomic DNA, begin with the optimization guidelines of 0-3% DMSO for 10–23 kb targets, and 3–6% DMSO for targets >23 kb. For lambda DNA targets >30 kb, begin optimization using 5–7% DMSO. For GC-rich targets, DMSO at 4–8% is generally recommended. The DMSO concentration should be titrated in the specified range in 1% increments.

Note The addition of DMSO may increase the error rate of the Herculase polymerase slightly (<50% increase with 3% DMSO). The use of DMSO is discouraged when the highest fidelity is essential.

Primer Design and Concentration

Primers should be ≥ 23 bp in length with a balanced $T_m \geq 60^{\circ}$ C. The resulting high annealing temperature promotes specificity and discourages secondary structure formation. Further, primer sequences should be analyzed for potential duplex and hairpin formation as well as false priming sites in order to obtain the highest yield of specific PCR products.

Use ~0.25 μ M final concentration of each primer for targets <10 kb, .and ~0.5 μ M final concentration of each primer for targets >10 kb. When using 25-mer oligonucleotide primers in a 50- μ I reaction volume, this is equivalent to ~100 ng or ~200 ng, respectively, of each primer.

Deoxynucleotide Concentrations

Amplification efficiencies are influenced by deoxynucleotide (dNTP) concentrations. Insufficient concentrations of dNTPs may result in lower yields. For targets ≤ 10 kb, 200 μ M each dNTP is recommended; for targets ≥ 10 kb, the use of 500 μ M each dNTP is optimal.

Cycling Parameters

As with all PCR reactions, cycling parameters are critical for successful amplification and may require further optimization.

Extension Time

Maintain an extension time of 1.0 minute/kb of template for general applications; longer extension times may produce higher yields, however, an extension time exceeding one hour provides no further benefit.

Extension Temperature

Extension temperatures also have a critical effect on amplicon yield. An extension temperature of 72° C should be used with templates less than 10 kb, while templates greater than 10 kb in length require an extension temperature of 68° C.

Denaturation Temperature

High denaturation temperatures damage DNA templates, so the denaturation temperature should be as low as possible. A denaturation temperature of 92°C works well for most targets, and is sufficient to denature the hotstart antibodies. For GC-rich targets, which are difficult to melt, a denaturation temperature of 98° C is recommended.

GC-Rich Targets

For amplification of GC-rich targets, we recommend using DMSO in the reaction at a concentration of 4-8% and using a PCR program with a denaturation temperature of 98°C and an extension temperature of 72°C.

1. Prepare a reaction mixture for the appropriate number of samples to be amplified. The following table provides an example of a reaction mixture for the amplification of targets ≤ 10 kb, targets > 10 kb, and GC-rich targets (which are typically ≤ 10 kb). The recipe listed in the table is for one reaction and can be adjusted for multiple samples. Add the components *in order* and mix gently.

	Quantity per reaction		
Component	≤10-kb targets	>10-kb targets	GC-rich targets ≤10 kb
Distilled water	X μl to final volume of 50.0 μl	X μl to final volume of 50.0 μl	X μl to final volume of 50.0 μl
10×Herculase reaction buffer	5.0 μl	5.0 μl	5.0 μl
dNTP mix (25 mM of each dNTP)	0.4 μl	1.0 μl	0.4 μl
DNA template: Genomic DNA Low-complexity templates (λ DNA or cloned DNA)	100–250 ng 1–15 ng	250–1000 ng 15–60 ng	100–250 ng 1–15 ng
Primer #1	100 ng	200 ng	100 ng
Primer #2	100 ng	200 ng	100 ng
Herculase hotstart polymerase (5 U/µl)	0.5 μl	1.0 μl	0.5 μl
DMSO°	_	Either 0–3%, 3–6%, 5–7% or 4–8%	4-8%
Total reaction volume	50.0 μl	50.0 μl	50.0 μl

^a The optimal DMSO concentration must be determined by titration in 1% increments for each primer-template set. See *Critical Optimization Parameters* for DMSO concentration range recommendations for specific targets.

- 2. Before thermal cycling, aliquot 50 μ l of the master mixture into sterile thinwalled PCR tubes.
- 3. If the extension times are >15 minutes, overlay each reaction with DNase-, RNase-, and protease-free mineral oil (Sigma, St. Louis, Missouri) even if the temperature-cycler is equipped with a heated cover.
- 4. Perform PCR using optimized cycling conditions. Suggested cycling parameters are given in the following tables for (A) targets with average base composition; and (B) GC-rich targets.

Temperature Duration Number of cycles Targets >10 kb Targets ≤10 kb Targets >10 kb Targets ≤10 kb Segment 1 92°C 95°C 2 minutes 2 minutes 1 2 10 92°C 95°C 10 seconds 30 seconds Primer $T_m - 5^{\circ}C^{\circ}$ Primer $T_m - 5^{\circ}C^{\circ}$ 30 seconds 30 seconds 68°C 72°C 60 seconds/kb of 60 seconds/kb of PCR target PCR target 3 92°C 20 95°C 10 seconds 30 seconds 30 seconds 30 seconds Primer $T_m - 5^{\circ}C$ Primer $T_m - 5^{\circ}C$ 68°C 72°C 60 seconds/kb of 60 seconds/kb of PCR target plus PCR target plus 10 seconds/cycle 10 seconds/cycle

Average Base Composistion Targets (>10 kb or \leq 10 kb)

^a The annealing temperature may be lowered or raised further if necessary to obtain optimal results. Typical annealing temperatures will range between 60 and 65°C.

(B)

(A)

GC-Rich Targets (≤10 kb)

Segment	Number of cycles	Temperature	Duration
1	1	98°C	3 minutes
2	10	98°C	40 seconds
		Primer $T_m - 5^{\circ}C$	30 seconds
		72°C	60 seconds/kb of PCR target ^₀
3	20–25	98°C	40 seconds
		Primer $T_m - 5^{\circ}C$	30 seconds
		72°C	60 seconds/kb of PCR target plus 10 seconds/cycle ^a
4	1	72°C	10 minutes

^a 1 minute minimum extension.

5. Analyze the PCR amplification products by electrophoresis using an appropriate percentage acrylamide or agarose gel. Long PCR products greater than 17 kb in length may be separated on a 0.6% agarose gel, however a 0.8% agarose gel may be used if higher resolution with less separation is desired. For maximum separation and resolution, pulse field gel electrophoresis with a 1.0% gel is recommended.

TROUBLESHOOTING

Observations	Suggestions	
No PCR product or lower yield than expected	Increase the amount of Herculase hotstart polymerase (up to 10 U can be used for targets >23 kb)	
	Increase the number of cycles up to a maximum of 40 cycles	
	Use intact and highly purified DNA templates	
	Store the template at 4°C; do not freeze the template	
	Lower the annealing temperature in 5°C increments	
	Allow at least 60 seconds of extension time for each kilobase to be amplified (90 seconds of extension time per kilobase may also be helpful for difficult templates). For GC-rich targets, use a minimum extension time of 1 minute	
	For targets >10 kb, denaturation times of 10 seconds at 92°C are usually sufficient, while longer denaturation times or higher denaturation temperatures may damage the DNA template; use the shortest denaturation time compatible with successful PCR on the thermal cycler	
	For targets >10 kb, denaturation times of 30 seconds at 95°C are usually sufficient. For GC-rich targets, denaturation times of 40 seconds at 98°C are usually sufficient	
	Primer pairs exhibiting matched primer melting temperatures (T_m) and complete complementarity to the template are recommended	
	Analyze the primers to ensure that duplexes or hairpins do not form	
	Gel-purified or HPLC-purified primers ≥23 nucleotides in length are recommended	
	Purify the primers by PAGE or HPLC	
	Adjust the ratio of primer versus template to optimize yield of the desired product	
	For targets >10 kb, increase the amount of template DNA	
Artifactual PCR smears	Use DMSO in the PCR mixture; titrate the DMSO concentration in 1% increments	
	Decrease the amount of Herculase hotstart polymerase	
	Reduce the extension time	
Multiple bands	Optimize the cycling parameters specifically for the primer–template set and the thermal cycler used	
	Increase the annealing temperature in 5°C increments	
	Use Perfect Match PCR enhancer to improve PCR product specificity	
	Use DMSO in the PCR mixture; titrate the DMSO concentration	
	Verify that the primers hybridize only to the desired sequences on the template	

- 1. Borns, M. and Hogrefe, H. H. (2000) Strategies 13(1):1-3.
- 2. Borns, M. and Hogrefe, H. H. (2001) Strategies 14(2):41-42.
- 3. Hogrefe, H. H., Hansen, C. J., Scott, B. R. and Nielson, K. B. (2002) *Proc Natl Acad Sci U S A* 99(2):596-601.

ENDNOTES

Deep Vent® and Vent® are registered trademarks of New England Biolabs, Inc.

MSDS INFORMATION

Material Safety Data Sheets (MSDSs) are provided online at *http://www.genomics.agilent.com*. MSDS documents are not included with product shipments.

Catalog #600310, 600312, 600314

QUICK-REFERENCE PROTOCOL (TEMPLATES ≤10 KB)*

• Prepare reaction mixtures according to the table below, mix gently, and place in thinwalled PCR tubes.

	Quantity per reaction		
Component	Average composition targets	GC-rich targets	
Distilled water	X μl to final volume of 50.0 μl	X μ l to final volume of 50.0 μ l	
10×Herculase reaction buffer	5.0 μl	5.0 μl	
dNTP mix (25 mM of each dNTP)	0.4 µl	0.4 μl	
DNA template:			
Genomic DNA	100–250 ng	100–250 ng	
Low-complexity templates	1–15 ng	1–15 ng	
Primer #1	100 ng	100 ng	
Primer #2	100 ng	100 ng	
Herculase hotstart polymerase (5 U/µl)	0.5 μl	0.5 μl	
DMSO	—	4–8%	
Total reaction volume	50.0 μl	50.0 μl	

- If extension times are >15 minutes, overlay each reaction mixture with 50 μ l mineral oil.
- Perform PCR using the cycling conditions appropriate for your temperature cycler and target base composition, according to the following tables:
 - (A) Single block temperature cyclers (average base composition targets)
 - (B) Single block temperature cyclers (GC-rich targets)

* For targets >10 kb, see *Protocol* section of manual.

Segment	Number of cycles	Temperature	Duration
1	1	95°C	2 minutes
2	10	95°C	30 seconds
		PrimerT _m – 5°C	30 seconds
		72°C	60 seconds/kb target
3	20	95°C	30 seconds
		PrimerT _m – 5°C	30 seconds
		72°C	60 seconds/kb target plus 10 seconds per cycle

(A) Single-Block Temperature Cyclers, Average Base Composition Targets <10 kb

(B) Single-Block Temperature Cyclers, GC-Rich Targets $\leq 10 \text{ kb}$

Segment	Number of cycles	Temperature	Duration
1	1	98°C	3 minutes
2	10	98°C	40 seconds
		PrimerT _m – 5°C	30 seconds
		72°C	60 seconds/kb target
3	20–25	98°C	40 seconds
		PrimerT _m – 5°C	30 seconds
		72°C	60 seconds/kb target plus 10 seconds per cycle
4	1	72°C	10 minutes

• Analyze the PCR amplification products by gel electrophoresis