

ExAssist Interference-Resistant Helper Phage with SOLR Strain

Instruction Manual

Catalog #200253 Revision C.0

For Research Use Only. Not for use in diagnostic procedures. 200253-12

LIMITED PRODUCT WARRANTY

This warranty limits our liability to replacement of this product. No other warranties of any kind, express or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Agilent. Agilent shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product.

ORDERING INFORMATION AND TECHNICAL SERVICES

Email

techservices@agilent.com

World Wide Web

www.genomics.agilent.com

Telephone

Location	Telephone
United States and Canada	800 227 9770
Austria	01 25125 6800
Benelux	02 404 92 22
Denmark	45 70 13 00 30
Finland	010 802 220
France	0810 446 446
Germany	0800 603 1000
Italy	800 012575
Netherlands	020 547 2600
Spain	901 11 68 90
Sweden	08 506 4 8960
Switzerland	0848 8035 60
UK/Ireland	0845 712 5292
All Other Countries	Please visit <u>www.genomics.agilent.com</u> and click Contact Us

ExAssist Interference-Resistant Helper Phage

with SOLR Strain

CONTENTS

Materials Provided1		
Storage Conditions1		
Introduction		
Bacterial Host Strains		
Host Strain Genotypes2		
Recommended Media2		
Establishing an Agar Plate Bacterial Stock		
Preparing a -80°C Bacterial Glycerol Stock		
Growth of Cells for Phage Infection		
Helper Phage4		
Storing the Helper Phage4		
Titering the Helper Phage		
Amplifying the Helper Phage		
In Vivo Excision Protocol Using the ExAssist Interference-Resistant Helper Phage with SOLR		
Strain6		
Single-Clone Excision Protocol		
Mass Excision Protocol7		
Troubleshooting9		
Preparation of Media and Reagents10		
References11		
Endnotes11		
MSDS Information		

ExAssist Interference-Resistant Helper Phage with SOLR Strain

MATERIALS PROVIDED

Materials provided	Quantity
SOLR Strain	0.5-ml bacterial glycerol stock
XL1-Blue MRF´ Strain	0.5-ml bacterial glycerol stock
ExAssist interference-resistant helper phage (~1.0 × 10 ¹⁰ pfu/ml) ^{a.c}	1 ml

^a Retiter after 1 month. Store at –80°C.

^b Supercoiled, single-strand size is 7.3 kb [comigrates with \sim 5 kb of double-stranded linear DNA on a 1% (w/v) agarose gel].

^c We recommend VCSM13 Interference-Resistant Helper Phage and R408 Interference-Resistant Helper Phage for singlestranded rescue. ExAssist interference-resistant helper phage has α -complementing β -galactosidase sequences which may interfere with sequencing or site-directed mutagenesis where oligonucleotide primers hybridize to β -galactosidase sequences (e.g., M13–20 primer).

STORAGE CONDITIONS

Helper Phage: -80°C Bacterial Glycerol Stocks: -80°C

Revision C.0

© Agilent Technologies, Inc. 2015.

The ExAssist interference-resistant helper phage with SOLR strain is designed to allow efficient excision of the pBluescript phagemid from the Lambda ZAP vectors, while preventing the problems that are associated with helper phage co-infection. The ExAssist helper phage contains an amber mutation that prevents replication of the phage genome in a nonsuppressing *Escherichia coli* strain such as SOLR cells. This allows only the excised phagemid to replicate in the host, removing the possibility of co-infection from the ExAssist helper phage.

BACTERIAL HOST STRAINS

Host Strain Genotypes

Host strain	Genotype
SOLR strain [°]	e14 [–] (McrA [–]) Δ(mcrCB-hsdSMR-mrr)171 sbcC recB recJ uvrC umuC::Tn5 (Kan ^r) lac gyrA96 relA1 thi-1 endA1 λ ^R [F´ proAB lacl ^q ZΔM15] Su [–] (nonsuppressing)
XL1-Blue MRF´ strain	Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F´ proAB lacl ^q ZΔM15 Tn10 (Tet ^r)]

 $^{\mbox{\tiny a}}$ Use the SOLR strain for excision only.

Recommended Media

Host strain	Agar plates and liquid medium for bacterial streak and glycerol stock	Liquid medium for bacterial cultures prior to phage attachment	Agar plates and top agar for plaque formation	Agar plates for excision protocol
SOLR strain	LB-kanamycin ^₀	LB broth with supplements ^{a-c}	_	LB-ampicillin⁰
XL1-Blue MRF´ strain	LB-tetracycline ^a	LB broth with supplements ^{a-c}	NZYª	_

^a See Preparation of Media and Reagents.

^b LB broth with 0.2% (w/v) maltose and 10 mM MgSO₄.

^c Maltose and magnesium supplements are required for optimal lambda phage receptor expression on the surface of the XL1-Blue MRF' host cell. The media supplements are not required for helper phage infection, but are included in both protocols for simplified media preparation.

Establishing an Agar Plate Bacterial Stock

The bacterial host strains are shipped as bacterial glycerol stocks. On arrival, prepare the following plates from the bacterial glycerol stocks.

- **Note** Do not allow the contents of the vial to thaw. The vials should be stored immediately at -20° or $-80^{\circ}C$, but most strains remain viable longer if stored at $-80^{\circ}C$. It is best to avoid repeated thawing of the host strains in order to maintain extended viability.
- 1. Revive the stored cells by scraping off splinters of solid ice with a sterile wire loop.
- 2. Streak the splinters onto an LB agar plate containing the appropriate antibiotic (see *Recommended Media*), if one is necessary.
- 3. Incubate the plate overnight at 37°C.
- 4. Seal the plate with Parafilm[®] laboratory film and store the plate at 4°C for up to 1 week.
- 5. Restreak the cells onto a fresh plate every week.

Preparing a –80°C Bacterial Glycerol Stock

- 1. In a sterile 50-ml conical tube, inoculate 10 ml of LB broth with the appropriate antibiotic (see *Recommended Media*) with one colony from the plate. Grow the cells to late log phase.
- 2. Add 4.5 ml of a sterile glycerol-liquid medium solution (prepared by mixing 5 ml of glycerol + 5 ml of the appropriate medium) to the bacterial culture from step 1. Mix well.
- 3. Aliquot into sterile centrifuge tubes (1 ml/tube).

This preparation may be stored at -20° C for 1-2 years or at -80° C for more than 2 years.

Growth of Cells for Phage Infection

Bacterial cultures for phage infection should be started from a fresh plate using a single colony and should be grown overnight with vigorous shaking at 30°C in 50 ml of LB broth supplemented with 0.2% (w/v) maltose and 10 mM MgSO₄. (Do not use tetracycline in the presence of magnesium.) The lower temperature ensures that the cells will not overgrow. The cells should be spun at 1000 × g for 10 minutes then gently resuspended in 25 ml of 10 mM MgSO₄. Before use, dilute cells to an OD₆₀₀ of 1.0 with 10 mM MgSO₄. Bacterial cells prepared in this manner can be used for all phage manipulations described within the manual. Highest efficiencies are obtained from freshly prepared cells.

Storing the Helper Phage

The ExAssist helper phage is supplied in 7% dimethylsulfoxide (DMSO) and should be stored at -80° C. The helper phage may be stored for short periods of time at -20° C or 4°C. It is important to titer the helper phage prior to each use. Expect titers of approximately 10^{10} pfu/ml. If the titer drops over time, prepare a fresh high-titer stock of the helper phage as outlined in *Amplifying the Helper Phage*.

Titering the Helper Phage

- 1. Transfer a colony of XL1-Blue MRF' cells into 10 ml of LB broth with supplements in a 50-ml conical tube. Incubate the conical tube with shaking at 37° C until growth reaches an OD₆₀₀ of 1.0.
- 2. Dilute the ExAssist helper phage $(10^{-4}-10^{-7})$ in SM buffer (See *Preparation of Media and Reagents*) and combine 1 µl of each dilution with 200 µl of XL1-Blue MRF' cells (OD₆₀₀ = 1.0).
- 3. Incubate the helper phage and the XL1-Blue MRF' cells for 15 minutes at 37°C to allow the phage to attach to the cells.
- 4. Add 3 ml of NZY top agar, melted and cooled to ~48°C, and plate immediately onto dry, prewarmed NZY agar plates. Allow the plates to set for 10 minutes.
- 5. Invert the plates and incubate overnight at 37°C.

Note *ExAssist plaques will have a cloudier appearance than lambda phage plaques.*

6. To determine the titer [in plaque-forming units per milliliter (pfu/ml)], use the following formula:

$$\frac{\text{Number of plaques (pfu)} \times \text{dilution factor}}{\text{Volume plated (µl)}} \times 1000 \text{ µl / ml}$$

where the volume plated (in microliters) refers to the volume of the helper phage solution added to the cells.

Amplifying the Helper Phage

1. Transfer a colony of XL1-Blue MRF' cells into 10 ml of LB broth with supplements in a 50-ml conical tube. Incubate the conical tube with shaking at 37° C until growth reaches an OD₆₀₀ of 0.3.

Note An OD_{600} of 0.3 corresponds to 2.5×10^8 cells/ml.

- 2. Add the ExAssist helper phage at a multiplicity of infection (MOI) of 10:1 or 1:1 (phage-to-cells ratio).
- 3. Incubate the conical tube at 37°C for 15 minutes to allow the phage to attach to the cells.
- 4. Incubate the conical tube with shaking at 37°C for 8 hours.
- 5. Heat the conical tube at 65°C for 15 minutes.
- 6. Spin down the cell debris and transfer the supernatant to a fresh conical tube.
- 7. The titer of the supernatant should be between 7.5×10^{10} and 1.0×10^{12} pfu/ml.
- 8. Add dimethyl sulfoxide (DMSO) to a final concentration of 7% (v/v) and store at -80° C.
- 9. For further details about helper phage titering or amplification, please see *Titering the Helper Phage* or Reference 1.

Single-Clone Excision Protocol

Day 1

- 1. Core the plaque of interest from the agar plate and transfer the plaque to a sterile microcentrifuge tube containing 500 μ l of SM buffer and 20 μ l of chloroform. Vortex the microcentrifuge tube to release the phage particles into the SM buffer. Incubate the microcentrifuge tube for 1–2 hours at room temperature or overnight at 4°C. (This phage stock is stable for up to 6 months at 4°C.)
- 2. Grow separate 50-ml overnight cultures of XL1-Blue MRF' and SOLR cells in LB broth with supplements at 30°C.

Day 2

- 3. Gently spin down the XL1-Blue MRF' and SOLR cells (1000 × g). Resuspend each of the cell pellets in 25 ml of 10 mM MgSO₄. Measure the OD₆₀₀ of the cell suspensions, then adjust the concentration of the cells to an OD₆₀₀ of 1.0 (8 × 10⁸ cells/ml) in 10 mM MgSO₄.
- 4. Combine the following components in a 14-ml BD Falcon polypropylene round-bottom tube:

200 µl of XL1-Blue MRF´ cells at an OD_{600} of 1.0 250 µl of phage stock (containing >1 × 10⁵ phage particles) 1 µl of the ExAssist helper phage (>1 × 10⁶ pfu/µl)

- **Note** Briefly spin the lambda phage stock to ensure that the chloroform is separated completely before removing the aliquot used in the excision reaction.
- 5. Incubate the BD Falcon polypropylene tube at 37°C for 15 minutes to allow the phage to attach to the cells.
- 6. Add 3 ml of LB broth with supplements and incubate the BD Falcon polypropylene tube for 2.5–3 hours at 37°C with shaking. Because clonal representation is not relevant, single-clone excision reactions can be safely performed overnight.
 - **Note** The turbidity of the media is not indicative of the success of the excision.
- 7. Heat the BD Falcon polypropylene tube at $65-70^{\circ}$ C for 20 minutes to lyse the lambda phage particles and the cells. Spin the tube at $1000 \times g$ for 15 minutes to pellet the cell debris.

- 8. Decant the supernatant into a sterile 14-ml BD Falcon polypropylene round-bottom tube. This stock contains the excised pBluescript phagemid packaged as filamentous phage particles. (This stock may be stored at 4° C for 1–2 months.)
- 9. To plate the excised phagemids, add 200 μ l of freshly grown SOLR cells from step 3 (OD₆₀₀ = 1.0) to two 1.5-ml microcentrifuge tubes. Add 100 μ l of the phage supernatant (from step 8 above) to one microcentrifuge tube and 10 μ l of the phage supernatant to the other microcentrifuge tube.
- 10. Incubate the microcentrifuge tubes at 37°C for 15 minutes.
- 11. Plate 200 μ l of the cell mixture from each microcentrifuge tube on LB-ampicillin agar plates (100 μ g/ml) and incubate the plates overnight at 37°C.

Due to the high-efficiency of the excision process, it may be necessary to titrate the supernatant to achieve single-colony isolation.

Colonies appearing on the plate contain the pBluescript double-stranded phagemid with the cloned DNA insert. Helper phage will not grow, since helper phage is unable to replicate in the Su^- (nonsuppressing) SOLR strain and does not contain ampicillin-resistance genes. SOLR cells are also resistant to lambda phage infection, thus preventing lambda phage contamination after excision.

To maintain the pBluescript phagemid, streak the colony on a new LB-ampicillin agar plate. For long-term storage, prepare a bacterial glycerol stock and store at -80° C.

VCSM13 helper phage is recommended for the single-stranded rescue procedure. The single-stranded rescue procedure can be found in the Agilent *pBluescript II Phagemid Vectors Instruction Manual*.

Mass Excision Protocol

Day 1

1. Grow separate 50-ml overnight cultures of XL1-Blue MRF' and SOLR cells in LB broth with supplements at 30°C.

Day 2

2. Gently spin down the XL1-Blue MRF' and SOLR cells (1000 × g). Resuspend each of the cell pellets in 25 ml of 10 mM MgSO₄. Measure the OD₆₀₀ of the cell suspensions, then adjust the concentration of the cells to an OD₆₀₀ of 1.0 (8 × 10⁸ cells/ml) in 10 mM MgSO₄.

3. In a 50-ml conical tube, combine a portion of the amplified lambda bacteriophage library with XL1-Blue MRF' cells at a MOI of 1:10 lambda phage-to-cell ratio. Excise 10- to 100-fold more lambda phage than the size of the primary library to ensure statistical representation of the excised clones. Add ExAssist helper phage at a 10:1 helper phage-to-cells ratio to ensure that every cell is co-infected with lambda phage and helper phage.

For example, use

10⁷ pfu of the lambda phage (i.e., 10- to 100-fold above the primary library size)

- 10^{8} XL1-Blue MRF' cells (1:10 lambda phage-to-cell ratio, noting that an OD₆₀₀ of 1.0 corresponds to 8×10^{8} cells/ml)
- 10⁹ pfu of ExAssist helper phage (10:1 helper phage-to-cells ratio)
- **Note** Briefly spin the lambda phage stock to ensure that the chloroform is separated completely before removing the aliquot used in the excision reaction.
- 4. Incubate the conical tube at 37°C for 15 minutes to allow the phage to attach to the cells.
- 5. Add 20 ml of LB broth with supplements and incubate the conical tube for 2.5–3 hours at 37°C with shaking.
 - **Notes** Incubation times for mass excision in excess of 3 hours may alter the clonal representation.

The turbidity of the media is not indicative of the success of the excision.

- 6. Heat the conical tube at 65–70°C for 20 minutes to lyse the lambda phage particles and the cells.
- 7. Spin the conical tube at $1000 \times g$ for 10 minutes to pellet the cell debris and then decant the supernatant into a sterile conical tube.
- 8. To titer the excised phagemids, combine 1 μ l of this supernatant with 200 μ l of SOLR cells from step 2 in a 1.5-ml microcentrifuge tube.
- 9. Incubate the microcentrifuge tube at 37°C for 15 minutes.
- 10. Plate 100 μ l of the cell mixture onto LB-ampicillin agar plates (100 μ g/ml) and incubate the plates overnight at 37°C.
 - **Note** It may be necessary to further dilute the cell mixture to achieve single-colony isolation.

At this stage, colonies may be selected for plasmid preps, or the cell mixture may be plated directly onto filters for colony screening.

TROUBLESHOOTING

Observation	Suggestions
The number of colonies is too low	The molar ratios of lambda phage to cells to helper phage is critical. Verify the Lambda ZAP phage titer. It may be necessary to make a high-titer stock of the lambda phage and to repeat the excision procedure
	Increase the excision time to increase the number of colonies
	Poor rescue may be a result of toxic cDNA clones which can be isolated in lambda vectors but not in plasmid vectors. The ABLE C strain* and the ABLE K strain* reduce the copy number of common cloning vectors by ~4- and 10-fold, respectively, enhancing the probability that a toxic clone will be propagated. Positive clones observed on initial screening as lambda plaques can be excised and introduced into the ABLE strains. Excised phagemid libraries can also be screened directly in the ABLE strains
	The lambda phage stock aliquot used for in vivo excision cannot contain chloroform, as chloroform lyses the <i>E. coli</i> cells. Briefly spin the lambda phage stock to ensure that the chloroform is separated completely before removing the aliquot

* ABLE competent cells (Catalog #200170–200172) and ABLE electroporation competent cells (Catalog #200160– 200162) are available separately from Agilent.

PREPARATION OF MEDIA AND REAGENTS

$\begin{array}{c} \textbf{SM Buffer (per Liter)} \\ 5.8 \text{ g of NaCl} \\ 2.0 \text{ g of MgSO}_4 \cdot 7\text{H}_2\text{O} \\ 50.0 \text{ ml of 1 M Tris-HCl (pH 7.5)} \\ 5.0 \text{ ml of 2\% (w/v) gelatin} \\ \text{Add deionized H}_2\text{O to a final volume of} \\ 1 \text{ liter} \\ \text{Autoclave} \end{array}$	LB Broth (per Liter) 10 g of NaCl 10 g of tryptone 5 g of yeast extract Add deionized H ₂ O to a final volume of 1 liter Adjust pH to 7.0 with 5 N NaOH Autoclave
LB Broth with Supplements Prepare 1 liter of LB broth Autoclave Add the following filter-sterilized supplements prior to use 10 ml of 1 M MgSO ₄ 3 ml of a 2 M maltose solution or 10 ml of 20% (w/v) maltose	LB–Ampicillin Agar (per Liter) 1 liter of LB agar, autoclaved Cool to 55°C Add 10 ml of 10-mg/ml filter-sterilized ampicillin Pour into petri dishes (~25 ml/100-mm plate)
LB–Kanamycin Broth (per Liter) Prepare 1 liter of LB broth Autoclave Cool to 55°C Add 50 mg of filter-sterilized kanamycin	LB–Kanamycin Agar (per Liter) Prepare 1 liter of LB agar Autoclave Cool to 55°C Add 5 ml of 10-mg/ml, filter-sterilized kanamycin Pour into petri dishes (~25 ml/100-mm plate)
LB-Tetracycline Broth (per Liter) Prepare 1 liter of LB broth Autoclave Cool to 55°C Add 12.5 mg of filter-sterilized tetracycline Store broth in a dark, cool place as tetracycline is light-sensitive	 LB–Tetracycline Agar (per Liter) Prepare 1 liter of LB agar Autoclave Cool to 55°C Add 12.5 mg of filter-sterilized tetracycline Pour into petri dishes (~25 ml/100-mm plate) Store plates in a dark, cool place or cover plates with foil if left out at room temperature for extended time periods as tetracycline is light-sensitive

NZY Broth (per Liter)

5 g of NaCl 2 g of MgSO₄ \cdot 7H₂O 5 g of yeast extract 10 g of NZ amine (casein hydrolysate) Add deionized H₂O to a final volume of 1 liter Adjust the pH to 7.5 with NaOH Autoclave

NZY Top Agar (per Liter)

Prepare 1 liter of NZY broth Add 0.7% (w/v) agarose Autoclave

NZY Agar (per Liter)

5 g of NaCl
2 g of MgSO₄ · 7H₂O
5 g of yeast extract
10 g of NZ amine (casein hydrolysate)
15 g of agar
Add deionized H₂O to a final volume of

liter

Adjust the pH to 7.5 with NaOH
Autoclave
Pour into petri dishes (~25 ml/100-mm plate
or ~80 ml/150-mm plate)

REFERENCES

1. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

ENDNOTES

Parafilm® is a registered trademark of American Can Company.

MSDS INFORMATION

Material Safety Data Sheets (MSDSs) are provided online at *http://www.genomics.agilent.com*. MSDS documents are not included with product shipments.