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Synopsis: A key step in the analysis of expression microarray data is normalization: the process of adjusting the
signal from 2 different reporter channels on a single microarray or a single-reporter channel on multiple microarrays
to a common scale.  Current methods involve either normalization to some representative statistic of all of the data
or to a statistic of some subset of the data, such as a set of “housekeeping” genes.  The first method fails to cor-
rect any non-linearity between the data channels; the second method is sometimes undone by differential expres-
sion of genes that were thought to be unregulated.  Agilent has invented a normalization method that uses robust
statistical methods to establish the “central tendency” of a set of differential expression data.  Normalization uti-
lizes the data clustered near this central tendency; these points comprise an experimentally determined set of
housekeeping genes.  The resulting algorithm is rapid, robust and capable of correctly normalizing microarray data
from different platforms, such as cDNA and in situ synthesized oligonucleotide microarrays.  In addition, the method
provides an easily interpreted measurement of the degree to which the normalization has altered the original data.



ABSTRACT  
A key step in the analysis of expression microarray data is normalization: the process of adjusting the signal from 2 different reporter channels on a sin
channel on multiple arrays to a common scale.  The process of normalization sets the reference point for subsequent determinations of differential exp
in normalization will skew the reported expression ratios, and will invalidate the assumption of random errors which underlies statistical methods that 
observed ratios.  Current normalization methods are usually global, and involve either normalization to some representative statistic of all of the data, s
a statistic of some subset of the data, such as the mean of a set of “housekeeping” genes.  The first method fails if the relationship between two data 
average degree of differential expression is not symmetric between the samples being compared; the second method is sometimes undone by different
were thought to be unregulated.  We have constructed a normalization method that uses the “central tendency” of data of comparable intensity to esta
normalization.  The resulting algorithm is rapid, robust and superior to existing procedures in several ways.  First, the method completely eliminates sys
model-independent fashion, which greatly improves the reliability of statistical tests for the significance of differential expression.  Second, the method
of normalization genes.  Thus, it preserves the advantages of methods that utilize sets of “housekeeping” genes, while verifying for each experiment th
normalization subset do not exhibit differential expression.  Finally, the method provides several simple, quantitative measurements of the degree to wh
been altered.  Such measurements can be used to gauge the quality of a given microarray experiment.  We have used the method to normalize data fro
situ–synthesized oligonucleotide and cDNA-deposition array experiments.  In all cases, the method eliminates systematic errors, correctly identifies the
and assigns quality assessments that are in agreement with other methods of determining experiment quality. 

Method

This description applies to a 2-color gene expression microarray experiment.  First, the net
signal for the ith color (i = 1, 2) of the jth of N total features, Si,j, is globally normalized by
dividing by the geometric mean net signal in that channel:

Next, the globally normalized signal Γi,j is sorted by magnitude for each channel i, yielding
a rank-order Ri,j for each feature.  For each feature j, a rank order distance δj is calculated
and the features are filtered on the value of δj :

The features that pass this filter are rank-order consistent: their relative signal rank does
not change much between the two data channels.  Together, these features define the
central tendency of the data as a function of average signal intensity.  For the purposes of
a microarray experiment, they may be considered as an experimentally defined set of
housekeeping genes.

If global normalization was the correct normalization model for a particular data set, then a
smooth curve fit to a graph of log expression ratios LRj = log (Γ2,j / Γ1,j) for points in the
rank-order consistent subset (plotted as a function of average globally normalized signal  
Λj = (Γ2,j Γ1,j)

1/2 would be a horizontal line at LR = 0.  The extent to which the observed
graph differs from LR = 0 defines the degree to which global normalization has
systematically failed, and suggests a simple method for correcting this failure.  Suppose
that the smooth curve fit to the values of LR versus Λ has value LRj = C for average signal
Λj.  Then the simple transformation

will yield a new set of normalized signals {Ωi,j} with the property that a smooth curve fit to
the rank-order consistent subset of the features will now be a horizontal line at LR = 0.
Note that this normalization is local: it normalizes relative to a subset of points in some
neighborhood of the particular average intensity being considered.  The details of the
makeup of the neighborhood depend upon the method used to obtain the smooth curve fit.

By performing this procedure, one runs the danger of “correcting” a real aspect of the
data.  For example, if the genes probed by features on a given array are systematically up-
regulated at low expression levels and down-regulated at high expression levels relative to
some control sample, then this behavior will be corrected out of the data by the rank-order
consistent normalization procedure.  However, the root-mean-square average of the log
ratio displacement C of the rank-order invariant subset (or any similar quantity, referred to
as a normalization change metric) can be used to measure the degree to which the data
has been altered, with global normalization as the reference point.  Thus, this method
naturally yields an experimentally-determined indication of the degree to which the data
meets the assumptions underlying the method via the rms degree to which the data has
been changed, versus global normalization.
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Graphical Illustration of Rank-Order Consistency Normal
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for the average of 4 self-comparison gene expression microarray experime
were prepared from brewer’s yeast grown in synthetic complete medium;
mer oligonucleotide probe to every annotated ORF in the yeast genome (s
& -5022EN ). Data are shown for global normalization (Figure 1A) and ran
(Figure 1B) of the same arrays.  In both figures, points are colored accord
tained in the rank-order consistent normalization set: blue points were  al
points were never used and purple points were sometimes used.  Note th
expression) is known for this experiment, and that rank-order consistent n
systematic error in the global normalization.

Figures 2A and 2B: The figures show plots of log(expression ratio) versus
for the average of 4 fluor-reversed pairs of gene expression microarray ex
plete medium versus yeast in sporulation medium).  All other details are a
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Discussion and Conclusions
Rank-order consistency normalization (available as a component of Agilent’s Microarray Feature Extraction software, 5/2002
release) offers the following advantages as a normalization method:

• The method is robust and model-independent
• based on rank-order statistics
• capable of correcting arbitrary non-linear systematic distortions
• capable of recognizing and correcting distortions in datasets exhibiting high degrees of differential

expression (see Figs. 2A & 2B).
• The method naturally provides an experimentally-based measurement of the degree to which the data has been altered
• The method is capable of experimentally defining sets of housekeeping genes

The authors wish to acknowledge the assistance of the array fabrication, QC and scanner groups at Agilent Technologies, as well as many helpful discussions
with Dr. Nicholas Sampas (Agilent).

Which Genes Exhibit Rank-Order
Invariance?

The rank-order consistent subset of
features in a gene expression microarray
experiment act like housekeeping genes:
their expression levels are relatively
insensitive to the physiological state of
the cell.  A potential use of rank-order
consistent normalization is the
experimental determination of the
subset of genes that appear to be
housekeeping genes.

In order to test this idea, we examined
the subset of genes that were rank-order
consistent in each of the 8 arrays in the
yeast comparison experiment described
in Figure 2.  This experiment measured
differential expression between yeast
grown in sporulation medium (nitrogen
starvation) versus vegetative growth in a
defined complete medium.  The genes in
the rank-order consistent subset were
grouped according to either their Gene
Ontology (GO) molecular function or
their GO biological process.  The results
of this analysis are shown in the 2 tables
to the right.

The resulting lists are clearly enriched in
basic cellular functions.  Thus, rank-
order consistency shows great promise
as a method for experimentally defining
sets of housekeeping genes.

Number % in 
Gene Ontology Molecular Function of Genes Normalization Set

DNA-directed RNA polymerase II 7 57.14
proteasome endopeptidase 24 45.83
peptidylprolyl cis-trans isomerase 13 38.46
RNA polymerase III transcription factor 9 33.33
cochaperone 6 33.33
signal transducer 19 31.58
v-SNARE 16 31.25
protein serine/threonine kinase 18 27.78
glucose transporter 15 26.67
structural constituent of cytoskeleton 44 25.00

Number % in 
Gene Ontology Biological Process of Genes Normalization Set

ubiquitin-dependent protein degradation 59 33.90
chromatin silencing at HML and HMR 6 33.33
fatty acid biosynthesis 6 33.33
RNA processing 6 33.33
chromatin modeling 18 33.33
proteolysis and peptidolysis 9 33.33
transcription initiation, from Pol III promoter 9 33.33
chromatin assembly/disassembly 10 30.00
vacuolar acidification 17 29.41
establishment of cell polarity 55 29.09

Top 10 Normalization Groups 
(GO Molecular Function)

Top 10 Normalization Groups 
(GO Biological Process)

Graphical Illustration of Rank-Order Consistency Normalization (cDNA Arrays)

Figures 3A and 3B: The figures show plots of log(expression ratio) versus average net normalized intensity for a single self-
comparison gene expression microarray experiment.  The hybridization samples were prepared from human HeLa cell RNA;
the array was Agilent P/N G4100A (Human 1 cDNA array). Global normalization was used in Figure 3A; rank-order consis-
tent normalization of the same array was used in Figure 3B.  In both figures, points are colored according to how often they
were contained in the rank-order consistent normalization set: blue points were used for normalization, while red points
were not.  Note that the true answer (no differential expression) is known for this experiment, and that rank-order consistent
normalization corrects an obvious systematic error in the global normalization.
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Design it! Microarray Design Services

G2560A Microarray Design and Basic QC
G2561A Probe Selection
G2562A Probe Curation
G2563A Professional Consulting Service

Print it! cDNA and Custom Microarrays

G2506A 25-mer Custom in situ Oligonucleotide Microarray (8.4K)
G2507A 25-mer Custom in situ Oligonucleotide Microarray (22K)
G2508A 60-mer Custom in situ Oligonucleotide Microarray (8.4K)
G2509A 60-mer Custom in situ Oligonucleotide Microarray (22K)
G4100A Human 1 cDNA Microarray Kit 
G4101A Human 2 cDNA Microarray Kit
G4104A Mouse cDNA Microarray Kit
G4105A Rat cDNA Microarray Kit
G4135A Arabidopsis 1 Microarray Kit 

Run it! Microarray Processing Tools

G2554A Fluorescent Linear Amplification Kit
G2556A Fluorescent Linear Amplification Kit with Hyb’n Reagent
G2559A in situ Hybridization Reagent Kit
G2557A Fluorescent Direct Label Kit
G2555A Fluorescent Direct Label Kit with Hybridization Reagent
G2558A Deposition Hybridization Reagent Kit
G4145A Large Volume Deposition Hybridization Kit
G2530A Microarray Hybridization Chamber (8.4K configuration)
G2530-60002 Hybridization (8.4K format) Septa, Backings & Gasket
G2533A Microarray Hybridization Chamber (16.2K configuration) 
G2533-60002 Hybridization (16.2K format) Septa, Backings & Gasket
G2531A Microarray Hybridization Chamber (22K configuration)
G2531-60002 Hybridization (22K format) Septa, Backings & Gasket
G2940BA 2100 Bioanalyzer Instrument System Bundle
5065-4476 RNA 6000 Nano LabChip Kit (messenger & total RNA)
5064-8230 DNA 7500 LabChip Kit (100 - 7500 bp)
5064-8231 DNA 12000 LabChip Kit (100 - 12000 bp)
5064-8284 DNA 500 LabChip Kit (25 - 500 bp)
5065-4449 DNA 1000 LabChip Kit (25 - 1000 bp)
G2565AA 48-slide, Dual Laser DNA Microarray Scanner
(# varies) Microarray Technology Transfer, Services and Support Packages

Discover it! Microarray Analysis

G2567AA Feature Extraction Software License
(# varies) Rosetta Resolver Software


